
Thermodynamics HW #9

Due October 28

1. Schroeder 5.26

Solution:

Consider the conversion of graphite to diamond when the material is in contact with
a temperature and pressure reservoir.

The entropy is equal to the sum of the material entropy SC (C for carbon) and
reservoir entropy SR:

S = SC + SR

In the conversion of some small amount dN of graphite to diamond there will be some
exchange of energy dUR and volume dVR with the reservoir, so we get an entropy
change in the reservoir given by

dSR =

(
∂SR
∂UR

)
VR,NR

dUR +

(
∂SR
∂VR

)
ER,SR

dVR

=
dUR + PdVR

T

where T and P are the temperature and pressure of the reservoir. The change dVR
of the reservoir volume should be opposite that of the material, so if the material
shrinks, as it does in the conversion of graphite to diamond, then the reservoir entropy
accordingly grows. At high enough pressures then this increase in reservoir entropy
can overcome the negative change in material entropy.

2. Schroeder 5.38

Replace the first two sentences with,“Use Figure 5.17 to estimate the difference in
entropy between graphite and diamond at 500K.” Answer the other two questions as
they are.

Solution:

By my eyes I see a slope in the graph of 60kbar
2000K . By equation (5.46) and the volume

difference given in the text of ∆V = 1.9 · 10−6m3 we then get an entropy difference
∆S of

∆S = 5.8J/K

3. Schroeder 5.41

Solution:
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Assume that the vapor and liquid are in equilibrium at a temperature T and total
pressure P , and at this T and P the water vapor is at a pressure Pv.

Since the vapor and liquid phases are free to exchange heat and particles, the two
phases must have equal chemical potentials:

µv(Pv) = µg(P )

The chemical potential is also a function of the temperature T , but we omit as a
function argument it since it remains constant for all future processes considered.

If we then increase the total pressure by some small amount dP , then in order to
remain in equilibrium the vapor pressure must adjust by amount dPv so that

µv(Pv + dPv) = µl(P + dP )

Since the changes are small we can Taylor expand, giving:

µv(Pv) +
dµv
dPv

dPv = µl(P ) +
dµl
dP

dP

From equation (5.40) we have

dµv
dPv

=
kT

Pv
=
Vv
Nv

= ρ−1
v (Pv)

where ρv is the density of the vapor and in the second step we use the ideal gas law.

Further we find

dµl
dP

=

(
∂

∂P

Nµl
N

)
T,N

=
1

Nl

(
∂

∂P
Nlµl

)
T,Nl

(a) =
1

Nl

(
∂

∂P
Gl

)
T,Nl

(b) =
Vl
Nl

= ρ−1
l

where in line (a) we use the equation (5.35) and in line (b) we use equation (5.41)
and ρl is the density of the liquid. Again there is a bit of subtlety with how I’ve
maneuvered the partial derivatives here, so make sure the above is clear to you.

Finally then we have

ρ−1
v (Pv)dPv =

kT

Pv
dPv = kTd lnPv = ρ−1

l dP

integrating both sides we get

Pv(P ) = P ov e
P−Po
kT

/ρl ≡ P ov e
˜ρ(P )−ρ(Po)
ρl
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where at some total pressure Po we have a vapor pressure P ov . We’ve denoted ρ(P )
as the density of a gas at pressure P . Cast in these terms it is clear that the vapor
pressure Pv changes very little with changes in pressure because liquids are typically
much denser than gases. The exponent in the above equation for any gas pressure
P then will be small so that Pv(P ) ≈ P ov . There are rare though notable exceptions
to this rule. For a temperature and pressure approaching a critical point (see figure
5.11 so an illustration for water) the molar volumes of the vapor and liquid phases
converge. In this case small changes in pressure P can create significant changes in
the vapor pressure.

4. (a) Suppose we have a system S in contact with a reservoir R and that they can
exchange not only energy but also volume. Consider two micro-states of the
system S, one with energy E1 and volume V2 and the other with energy E2 and
volume V2. Show that the relative probabilities p2

p1
of finding the system in second

microstate vs. the first is given by

p2
p1

= e−
(E2−E1)+P (V2−V1)

kT

where T and P are the temperature and pressure of the reservoir, respectively.

(b) Now suppose that the reservoir can exchange particles with the system in addition
to energy and volume. Suppose that the first microstate has energy, volume, and
particle number E1, V1, N1 and likewise for the second microstate. Find their
relative probabilities p2

p1
in this case.

Solution:

The number of microstates of the collective system S+R with S in a given particular
microstate is ΩR, the number of microstates the reservoir has when the system S is
in the given microstate.

Let ET , VT , and NT be the total energy, volume, and particle number shared between
the two systems. Then we get ET −En, VT −Vn, and NT −Nn is the reservoir energy,
volume, and particle number when the system is in the nth microstate, where n = 1, 2.

From the definition of the reservoir entropy SR(ER, VR, NR) we have then that

ΩR(ET − En, VT − Vn, NT −Nn) = e
SR(ET−En,VT−Vn,NT−Nn)

k

since the reservoir is presumably much larger than the system, and E, V , and N are
all extensive parameters, then we are justified in approximating the entropy using a
Taylor expansion

SR(ET − En, VT − Vn, NT −Nn)

≈SR(ET , VT , NT )

+

(
∂SR
∂ER

)
VR,NR

(ET , VT , NT ) · (−En)

+

(
∂SR
∂VR

)
ER,NR

(ET , VT , NT ) · (−Vn)

+

(
∂SR
∂NR

)
ER,VR

(ET , VT , NT ) · (−Nn)

=SR(ET , VT , NT ) −
(
En
T

+
PVn
T

− µNn

T

)
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Where T , P , and µ are the temperature, pressure, and chemical potential of the
reservoir when it has an energy, volume, and particle number ET , VT , and NT . The
critical assumption here is that the reservoir is so large than its temperature, pressure,
and chemical potential varies negligibly from these values for any conceivable transfer
of energy En, volume Vn, or particle number Nn to the system, so they can be assumed
fixed.

Dividing then the reservoir multiplicities when the system S is in states 1 and 2 we
find

p2
p1

=
e
SR(ET ,VT ,NT )−(EnT +PVn

T
−µNn

T )
k

e
SR(ET ,VT ,NT )−(EnT +PVn

T
−µNn

T )
k

= e−
(E2−E1+P (V2−V1)−µ(N2−N1))

kT
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