
Thermodynamics HW #7

Due October 16

1. Schroeder 3.38

Solution: I think the answer in the solution manual for the question is pretty miser-
able. Here is what I hope you’ll agree is a more methodical solution.

First let’s be clear about what we are being asked to prove. If we have an ideal gas
with N different species (e.g. O2,He,N2) with partial pressure Pi for the ith species,
prove that for j 6= i we have that (

∂µi
∂Pj

)
T,Pk 6=j

= 0

so that the chemical potential of the ith species is independent of the partial pressures
of the other species. Since PiV = nikT we find then at fixed V this is equivalent to
the statement (

∂µi
∂nj

)
T,nk 6=j

= 0

As a first step we note the definition of the chemical potential of the ith species of a
multi-component system:

µi ≡ −T
(
∂S

∂U

)
n1,...,nN

(In this problem we are always at fixed volume V so we omit its mention for conve-
nience.) Since by assumption none of the particles interact, we can certainly assert
that particles of different species don’t interact. This means we can construct an
expression for the entropy S(U, n1, . . . , nN ) of the whole system by treating each com-
ponent as separate sub-systems in thermal contact with each other. We have a lot of
experience with such systems by now. Suppose that the entropy for the ith component
is given by Si(Ui, ni). The total entropy is S(Û , n1, . . . , nN ) of such a system with
total energy Û is given by the sum

∑N
i=1 Si(Ûi, ni) where

N∑
i=1

Ûi = Û

and the unconstrained heat flow between the different components implies that the
total energy Û is partitioned into the different Ûi in such a way that equalizes their
temperatures, i.e. so that there is some T such that(

∂Si
∂Ui

)
ni

(Ûi, ni) =
1

T
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for all i. We have then that

µi = −T
(
∂S

∂ni

)
U,nj 6=i

= −T
N∑
j=1

(
∂Sj
∂ni

)
U,nk 6=i

= −T
N∑
j=1

((
∂Sj
∂nj

)
Uj

(
∂nj
∂ni

)
U,nk 6=i

+

(
∂Sj
∂Uj

)
nj

(
∂Uj

∂ni

)
U,nk 6=i

)

where in the last line we apply the chain rule for partial derivatives. Make sure you
completely understand the previous step before continuing. For the first term in the
outer parentheses we have(

∂Sj
∂nj

)
Uj

(
∂nj
∂ni

)
U,nk 6=i

= − µ̃j
T
δij

where µ̃j is the chemical potential at a temperature T of a system containing nj
particles of the jth species and nothing else. Make sure the part about the temperature
is clear to you.

The second term in the outer parentheses gives(
∂Sj
∂Uj

)
nj

(
∂Uj

∂ni

)
U,nk 6=i

=
1

T

(
∂Uj

∂ni

)
U,nk 6=i

so that returning to the evaluation of µi we find

µi = −T
N∑
j=1

(
− µ̃j
T
δij +

1

T

(
∂Uj

∂ni

)
U,nk 6=i

)

= µ̃i −
N∑
j=1

(
∂Uj

∂ni

)
U,nk 6=i

= µ̃i −

(
∂
∑N

j=1 Uj

∂ni

)
U,nk 6=i

= µ̃i −
(
∂U

∂ni

)
U,nk 6=i

= µ̃i

So I have appeared to have derived the result µi = µ̃i, which asserts the equality of

• µi, which is a function of the thermodynamic variables U, n1, . . . , nN , and

• µ̃i, which we defined to be a number equal to the chemical potential potential of
a ith species-only gas of ni particles at a temperature T .

As it stands the statement is nonsense since it equates objects not even of the same
type. I leave it to you to go back through the derivation, instead deriving an expression
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for the value of the function µi evaluated at a temperature T and particle numbers
n1, . . . , nN . You should find that you get

µi(T, n1, . . . , nN ) = µ̃i

so that we find that the chemical potential µi of the multi-component system at a
temperature T and partial pressure Pi is equal to the chemical potential µ̃i of a single
component system with a pressure P = Pi (i.e. particle number n = ni) at the
same temperature. µi is thus clearly independent of the partial pressures Pj 6=i, thus
completing the proof.

I think this is a really good exercise that covers a lot of the tricky conceptual subtleties
of thermodynamic calculations. If there are steps in the derivation that aren’t totally
clear to you I strongly encourage you to work through it again slowly, filling in for
yourself any steps that I might have skipped over.

2. Schroeder 4.1

Solution: Using the ideal gas law, equipartition function, and first law of thermody-
namics we find that

• A:

– ∆U = f
2nk∆T = f

2V∆P = f
2V1 (P2 − P1)

– W = −P∆V = 0

– Q = ∆U −W = f
2V1 (P2 − P1)

• B:

– ∆U = f
2nk∆T = f

2P∆V = f
2P2 (V2 − V1)

– W = −P∆V = −P2 (V2 − V1)
– Q = ∆U −W =

(
f
2 + 1

)
P2 (V2 − V1)

• C:

– ∆U = f
2V2 (P1 − P2)

– W = 0

– Q = f
2V2 (P1 − P2)

• D:

– ∆U = f
2P1 (V1 − V2)

– W = −P1 (V1 − V2)
– Q = ∆U −W =

(
f
2 + 1

)
P1 (V1 − V2)

So that the work done on the system, i.e. the negative of the work produced by the
system, is

W = WA +WB +WC +WD = − (P2 − P1) (V2 − V1) = −2P1V1

and the heat absorbed by the system, i.e. the heat transferred to the system when in
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contact with the higher temperature reservoir, is

Qh = QA +QB

=
f

2
V1 (P2 − P1) +

(
f

2
+ 1

)
P2 (V2 − V1)

=
f

2
V1P1 + 4

(
f

2
+ 1

)
P1V1

=

(
5
f

2
+ 4

)
P1V1

=
33

2
P1V1

So that the efficiency e, which is the ratio of the work produced divided by the heat
absorbed, is

e =
−W
Qh

=
2

33

while the ideal engine has an efficiency ei

ei = 1− Tc
Th

where in our case we have a minimum temperature

Tc ∝ P1V1

and a maximum temperature

Th ∝
P2V2

=
6P1V1

giving

ei = 1− 1

6
=

5

6

giving an efficiency ratio of

ei
e

=
5

6
· 33

2
=

165

12
= 1375%

so our engine is quite a ways off from ideal.

3. Gas Absorption In this problem we investigate the role of the chemical potential
in the absorption of argon atoms by an absorbent1. You will get practice calculating
the chemical potential from the entropy2, and then using the chemical potential to
determine how the concentration of absorbed gas depends on the temperature and
pressure of the surrounding gas.

To get started we must first decide how to model the absorbed argon atoms. In general
this is complicated chemistry problem, but let’s try to simplify the situation as much
as possible while still capturing the essence of the siutation. Consider the following
hypothesis:

1graphite, for example, is a good absorbent on account of its high surface area to volume ratio
2In particular you will get practice negotiating the fussy partial derivatives commonly encountered in

thermodynamics
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• The absorbent contains N sites where atoms can attach. Each site can accomo-
date at most one argon atom.

• An argon atom bound to an absorption site can oscillate in one direction about
its equilibrium3 position, and that the oscillatory energy in quantized so that it
can take only integer multiples of some energy quantum hν.

• The energy of an atom at the equilibrium position in the absorption site is −ε,
i.e. the sites have a binding energy ε. See figure 1 for an illustration of the energy
level structure of the absorption sites.

Figure 1: Oscillator with energy quanta hν and binding energy ε.

From the above assumptions we find the total energy U is given by

U = qhν − nε

4where q is the total number of vibrational quanta and n is the number of oscillators
which is equal to the number NA of absorbed argon atoms, i.e.

NA = n

The entropy S(U,NA) of the absorbed argon atoms can then be written as

S(U,NA) = S1 (x(NA)) + S2 (n(U,NA), q(U,NA))

where

• S1(x) = −Nk (x lnx+ (1− x) ln (1− x)) is the entropy associated with the
(
N
NA

)
ways of distributing the NA atoms among the N absorption sites, with x ≡ NA

N
representing the concentration of absorbed argon atoms, and

• S2(n, q) = k ((n+ q) ln(n+ q)− n lnn− q ln q) is the entropy of an Einstein solid
with n oscillators and q quanta.

(a) Find an expression for the chemical potential µA of the absorbed atoms in terms
of x, T , ε, and q

n .

Take the limit where hv
kT → ∞ so that the oscillator degrees of freedom are

“frozen out”. Use the fact that q
n = 1

e
hν
kT −1

.

3Equilibrium here is meant as the position in the absorption site where the atom experiences zero forces,
not to be confused with thermodynamic equilibrium : )

4This was incorrectly written as U = qhν + nε in an earlier version.
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Answer: µA = kT ln x
1−x − ε

Solution:

We start with the definition of the chemical potential

µA ≡ −T
(
∂S

∂NA

)
U

note that the derivative is with respect to NA, not N , since we are considering
addition and removal not of absorption sites (of which there are a fixed number
N of) but rather of argon atoms (of which there are NA of).

We then expand S into S1 + S2. Since S1 and S2 are expressed in terms of
variables x, n, q that are themselves functions of the variables NA and U , we
must use the chain rule so that(

∂S

∂NA

)
U

=
dS1
dx

dx

dNA
+

(
∂S2
∂n

)
q

(
∂n

∂NA

)
U

+

(
∂S2
∂q

)
n

(
∂q

∂NA

)
U

looking at the expressions one by one we find

dS1
dx

= −kN ln
x

1− x
dx

dNA
=

1

N(
∂S2
∂n

)
q

= k ln
(

1 +
q

n

)
(
∂n

∂NA

)
U

= 1(
∂S2
∂q

)
n

= k ln

(
1 +

n

q

)
(

∂q

∂NA

)
U

=
ε

hν

for any temperature T we have

1 +
n

q
= 1 + e

hν
kT − 1 = e

hν
kT

so that

ln

(
1 +

n

q

)
=
hν

kT

while in the low temperature limit we have

1 +
q

n
≈ 1

so that
ln
(

1 +
q

n

)
≈ 0

putting this all together we arrive at the desired expression for µA.
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(b) In certain units To, Po the chemical potential µG of the argon gas has the form

µG(T, P ) = kT ln
P/Po

(T/To)
5/2

Show that when the absorbent is in equilibrium with the gas the absorbent con-
centration x ≡ NA

N takes the following form, known as the Langmuir absorption
isotherm.

x =
P

P(T ) + P

where
P(T ) = Poe

− ε
kT (T/To)

5/2

is the pressure at which the absorbent is half full.

Hint: What is true about the temperature and chemical potential of the two sys-
tems (A and G) in equilibrium?

Solution:

In equilibrium two systems in thermal contact that are free to exchange particles
will do so until they reach an equal temperature and chemical potential.

Setting µA = µG and TA = TG = T and solving for x we arrive at the desired
expression.

(c) What happens to the concentration x with increased P at constant T? Sketch a
plot.

How about when T is increased at constant P?

For both questions give a qualitative explanation in terms of the microscopic

behavior of the system. In particular try to account for the e−
ε
kT and

(
T
To

)5/2
factors in P(T ).

Hint: microscopically we can think of equilbrium as the condition where the rate
of atoms leaving the absorbent equals the rate of atoms exiting.

Solution:

The concentration x at very low pressures P � Po increases as P
Po

while at very

high pressures p� Po the concentration saturates to P
P = 1.

Microscopically we can rationalize this as follows:

• At fixed temperature the average impulse each atom delivers to the container
walls per collision is fixed, so that if the pressure increases it follows that the
rate of collisions must too increase. So too then we have that the in-flux of
atoms into the absorbent increases.

• The concentration of atoms in the absorbent must adjust so that the out-flux
balances this increased in-flux. Qualitative the out-flux can be understood
as the concentration of atoms divided by the average amount of time τ
any given atom spends in the absorbent before being ejected by thermal
agitation. At fixed temperature τ is fixed, so therefore the concentration of
atoms must increase to increase the out-flux.

Since both factors in the expression for P(T ) are decreasing function of T , we
conclude that the concentration decreases with increasing T , since P appears in
the denominator.
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Microscopically we reason that the in-flux is now decreased since we have equal
force on the walls by higher impulse per collision. This is borne out in the
thermodynamics by the factor (T/To)

5/2 in P(T ).

In addition, the increased temperature will decrease τ since the increased thermal
agitation increases the likelihood that an atom is dislodged from its binding site.
This is borne out in the thermodynamics by the factor e−

ε
kT in P(T ). Therefore

the concentration must decrease to balance the decreased in-flux.
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