
Thermodynamics HW #10
Due Friday, November 8th

1. The partition function Z is introduced simply as a normalization factor relating

“Boltzmann factors” e−
E
kT to probabilities. It turns out, however, that the partition

function is a key quantity in statistical physics. Many quantities of thermodynamic
interest are related to the partition function by surprisingly simple formulas. Show,
for example, that the average energy 〈U〉 of a thermodynamic system in contact with
a reservoir with a temperature T is given by the formula

〈U〉 = −(d/dβ) lnZ

where Z is the partition function and β ≡ 1
kT .

2. If we let our system contain a large number of particles, we know that under normal
conditions the system never strays far from its expectation values, so that we can say
U = 〈U〉. Though the energy U is a fundamental thermodynamic quantity, it is less
accessible experimentally than, say, the heat capacity Cv, which can be measured by
simply adding heat to system and noting the resulting temperature change. Show
further that Cv can be calculated from the partition function via

Cv = kσ2(d2/dσ2) lnZ

where k is Boltzmann’s constant and σ is any constant multiple of β.

3. Though the partition function of a microscopic system (like a single harmonic oscil-
lator) can be easy to calculate, the partition function of a macroscopic system can
be quite difficult because of the large number of degrees of freedom it contains. Of-
tentimes, however, the system can be broken up into smaller subsystems that do not
interact with other and as a result the partition function takes on a simplified form.

In detail, let us suppose a microstate of our system is described by a series of indices
n1, n2, . . . , ni, . . . , nM so that we can specify a microstate by specifying a value for
each of the ni

1,2. Further suppose that the energy E(n1, n2, . . . , nM ) of a microstate
is a sum of terms that only depend on one index, i.e.

E(n1, n2, . . . , nM ) = E1(n1) + E2(n2) + · · ·+ EN (nM )

3. It is in this sense that we say that the ith subsystem “does not interact” with the
jth subsystem, where j 6= i.

Assuming that all possible combinations of indices are allowed4, show then that the
partition function Z of this system factorizes so that

Z = Z1 × Z2 × · · · × ZM

1e.g. if M = 3 we could specify a microstate by specifying, e.g., n1 = 22, n2 = 41, n3 = 88
2For concreteness suppose that the ith index runs from 1, 2, . . . ,Mi.
3For example, the energy of a collection of gas particles can to a good approximation be written as a

sum of the kinetic energies plus vibrational energy plus rotational energy. In this case M = 3 and E1 might
be the kinetic energy of all the particles, and likewise for the other two.

4This ignores any difficulties associated with the possible indistinguishability of the particles in the
system. If we consider a gas, which is by definition low density, we can in a rough sense ignore the possibility
of multiple occupation of a single state, and thus correct for indistinguishability by inserting the 1/N ! “Gibbs
Factor” into the partition function at the end.
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where Zi depends only on Ei. Show that this implies that the energy U (and thus the
heat capacity Cv) of the system can be partitioned into a sum U1 + U2 + · · · + UM

(and Cv1 + Cv2 + · · ·+ CvM ) different pieces, each depending only on one particular
Ei.

4. Many systems also can (at least approximately) represented as a collection of non-
interacting particles. In this case, we would like to treat each index ni as a vector of
indices ni = [ni]1 , [ni]2 , . . . , [ni]N of length N , the number of particles in the system.
The jth component [ni]j of the vector specifies a quantum number for the jth particle.
So long as the particles do not interact, the energy Ei for a system in a microstate
n1,n2, . . . ,ni, . . . ,nM is given by

Ei(ni) =

N∑
j=1

εi([ni]j)

Show then that the partition function Zi simplifies to

Zi = zNi

where zi is indepedent of N and is the partition function for the ith index of a single
particle. Show that this in turn implies that ith molar heat capacity (cv)i is given by

(cv)i = Rσ2(d2/dσ2) ln zi (1)

where R ≡ NAk is the universal gas constant.
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