LECTURE 28 QUESTIONS

91 HALF-WAVE PLATES:	· · · ·	· · ·		· · · ·	· · ·
a) WHILE SOME MATGRIALS ARE	• • •	• •		0 0 1 0 0	
NATURALY BIRGERINGENT (E.G. QUARTE,		••••	• •	••••	• •
CALCITZ), OTHER MATZEIMS CAN		• •			• •
Acquire Birgerinzent By some		• •			• •
EXTERNAL INFLUENCE. FOR INSTANCE,		•••	• •		• •
STRESS - INDUCED BIREFRINGENCE IS Due To	• • •			1 0 0 2 0 0	• •
MATERIAL		• •		0 0 1 0 0	0 0 0 0
Foecs	· · · ·				· · · · · · · · · · · · · · · · · · ·
IF THE DIRECTION OF THE APPLIED	••••	••••			•••
FORCE DETERMINES THE C-AXIS OF					• •
THE BIRSFRINGENCE, WHICH FACES CAN YOU		• •			• •
SEND LIGHT INTO SO THAT THE CUBE ABOVE	. AC75.	••••		• •	• •
	• • •	••••	•	••••	• •
· · · · · · · · · · · · · · · · · · ·	· · ·	• •		· · ·	• •

b) HOW ELSE CAN BIRZFRINGENCE BE INDUCED? TAKE, E.L., A ROCK SALT LIKE Nacl ay a ay • Na+ THIS CRYSTAL IS "CUBIC" IN THE SENSE THAT IT LOOKS THE SAME VIEWED ALONG THE X, Y, OR Z Directions, AND IS THEREFORE ISOTROPIC (nx = ny = nz) HUDEXES of REGRACTION · DO23 THE ONIC NATURE OF THIS SOLID SUGGEST METHOD OF BREAKING THIS 3.D. SYMMETRY? C) Suppose LIGHT IS INCIDENT ON A GLASS SURFACE @ BREWSTER'S ANGLE & THE LIGHT IS S- POLARIZED: IN THE S- POLARIZATION HOW SHOLLD THE C-AXIS OF THE WAVE PLATE BE INCOMING LIGHT ORIENTED TO ELIMINATE THE REFLECTION (ныр 5 - POLAR 82D $\partial_{\mathbf{s}}$ THE INTERFACE? GLASS

· · · · · · · · · · · · · · · · · · ·		INFRARED (IR)
d) A HALFWAVE PLATE IS DESIGNED -	To work @	800 m.
WHAT WILL THE WASEPLATE DO TO 400	onn light, lf	= 7H2
PLATZ IS MADE OF A MATTRIAL WJ	7HE SAME	
BIRZERINGENCE $\Delta n = n_e - n_e$	400 m 4 80	>~~ ?
$\int \int e \Delta n_{400} = \Delta n_{5500}$		
$\wedge(\lambda)$	· · · · · · · ·	· · · · · · · ·
		· · · · · · ·
	· · · · · · · ·	· · · · · · · ·
8 2 QUARTER WAVE PLATES		
$(\alpha, \alpha) = (\alpha, \alpha)$		· · · · · · · ·
C-AKIS QWP LIGHT IS IN	ciozar on A QWF	» ω/ ιτs
45° POLARIZATION	@ 45° 70 THE	C-Axis As
Shown.		
· ACCORDING TO THE NOTES, THIS WILL	produce A Ci	RCULARLY
POLARIZED 047pu7, Bu7 WILL 17 132 RIGH	7 - OR 1957-	HANDED ?
ASSUME THAT THE C-AXIS IS THE FAST	"Axis, 1.8. A	< ^ .
HINT DO THE A-B-C-D-E ANALYSIS	SHOWN IN THE NO	T25.
	$\frac{1}{\lambda_0} * \Delta n = \frac{1}{4}$	FOR QUP.
HOW SHOULD YOU ORIZNT THE WAJEPEAT	72 70 objain	THE grosize
HANDED - NESS?		

RIGHT - HANDED LIGHT BUT TRANSMITS LEFT-HANDED. THE MATERIALS @
YOUR DISPOSAL ARE: DOBAYS MALUN' LAW · 1 LINEAR POLARIZER (1.2. POLAROID)
· 1 QUARTER WAVE PLATE.
· DOES YOUR SOLUTION ALSO ACT AS A "CIRCULAR POLARIZER", WHICH
TURNS UNPOLARIZZO LIGHT INTO CIRCULARIY-POLARIZZO LIGHT? WHAT "MODIFICATION" IS NECESSARY?
· CURRENT 3.D. MOVIE TECHNOLOGY ("REAL 3D") USES GLASSE
WHERE EACH LENS IS A CIRCULAR ANALYZER. ONE LENS
TRANSMITS RIGHT - HANDED POLARIZATION, & THE OTHER TRANSMITS LEFT.
THE MOVIE PROJECTOR SENDS OUT TWO VIDEOS OF OPPOSITE CIRCULAR
POLARIZATION, SO EACH EYE SEES A DIFFERENT VIDED ONE
VIDED IS RECORDED FROM A LOCATION THAT IS DISPLACED FROM THE
OTHER BY A DISTANCE ROUGHLY EQUAL TO THE SEPARATION OF
your Eyes. This Achieves A "STEREOSCOPIC" EFFECT, I.E.
THE ILLUSION of DEPTH.
· OLDER TECHNOLOGIES OPERATED ON THE SAME
PRINCIPIES BUT USED LINEAR INSTEAD OR GECULAR POLARIZED
LIGHT. WHAT IS THE PRACTICAL ADVANTAGE OF THE REAL 3D
TECHNOLOGY?

Q3 OPTICAL ACTIVITY a) · Explain why water (H20) is "Achiral" (AND THUS NOT OPTICALLY ACTIVE) EVEN THOUGH THERE IS A REFLECTION WHICH DOES NOT MAP THE MOLECULE ONTO ITSELF : MiREOR]. THE MOLECILES ARRANGED IN THE liquid . PHASE? . HOW AT DICHLORO METHANE OPTICALLY ACTIVE? P) . HOW ABOWT DI-CHLORO ETHYLEN? HOW ABOUT HYDROGEN PEROXIDE (H2O2)? 2.6 (Simplified) 🕑 ---- 🕞

THE MECHANICAL PRESSURE WILL Compress The BLOCK IN THE Direction || To THE FORCE, (Possibly Expanding THE BLOCK IN THE DIRECTIONS ____ TO THE FORCE). LIGHT WILL THEN ACT DIFFERENTLY IF IT IS POLARIZZO || To THE FORCE, I.E. THE C-Axis is 1 To THE FORCE Since WAVE PLATES HAVE THEIR C-AXIS I TO THE Surface NORMAL (1.2. C-Axis Lies ALLING THE SURFACE), WE WANT TO SEND LIGHT (Q NORMAL INCIDENCE) INTO ANY OF THE 4 FACES CONTAINING THE C-AXIS IN ORDER TO USE THE SQUEEZED BLOCK AS A WAVE PLATE.

"KERR EFFECT "

BIREFRINGENCE INDUCED WT C-AKIS 11 TO STATIC É FIELD!

c) INCOMING LIGHT 5 - POLAR, 220 HWP P. POLARIZZD DUTPLT Ē NO oF LIGHT @ P -ARIZED $\partial_{\mathbf{s}}$ BREWSTER'S ANGLE! 45 100 GLASS 100% TRANSMISSION! 5) X= 800 m C . in i.e. H.W.P. 1.2. 11 41 COMPONENTS. ·@ ^`) = 400 ~~ *. 6n = 2 * 1/2 No EFFECT!

Q3 a) THE KEY IS THAT A SUBSEQUENT ROTATION CAN BRING THE MOLECULE BACK TO ITS ORIGINAL ARRANGEMENT SINCE LIQUID WATER CONTAINS MOLECULES THAT ARE ALL RANDOMLY URIENTED (1.2. ROTATED] WE DO NOT CHANGE THE LIQUID'S PHYSICAL PROPERTIES By ROTATING EVERY MORECULE BY 180° (OR BY ANY ANGLE ABOUT ANY AXIS! NOTE, THOUGH, THAT REFLECTIONS ARE DISTINCT FROM ROTATIONS]] MiRROR Symmetry! (H) CE NOT UPTICALLY ACTIVE! MIRROR Symmetry! PLANE CONTAINS EUGRY PLANAR C) (U) Molzenez is O = OACHIRAL AND THUS NOT OPTICALLY ENANTIONZES
MIREOR ______
IMAL2 ______ ACTIVE: HOWEVER! COLLISIONS BETWEEN MOLECULES RAPID CONVERT <u>ю</u> — (н) ONE ENANTIONER TO THE OTHER So THAT A SAMPLE OF H202 NO WAY TO ROTATE LIQUID @ STP is RACEMIC", I.E. MIRROR IMAGE TO COINCIDE w/ original! CONTAINING AN EQUAL MIXTURE of EACH ENANTIOMER, & So IS NOT ACTIVE H202 is CHIRAL!