LECTURE 25 QUESTIONS

C	21 LENSES
a)	
	IN THE NO (2) WE ILLUSTRATED HOW RAUS LEAVING T
	POINT SOURCE A DISTANCE &, FROM THE LENS CONVERCE
	AT A POINT A DISTANCE & FROM THE LENS, WHERE :
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	DBJSLT
	OBJ521
	Point Pule #1
	Source
	RAYS
• • •	
	L L DISTANCE
	$\mathbf{\tau}$
	form LENGTH
	of LENS
	· HOWZUER, WE ONLY SHOWED THIS FOR TWO PAYS
	THAT REFRACT THEN THE LENS DO THE OTHER
	RAYS CONVERSE C d2 AS WELL! SHOW THAT
	THERE IS AT LEAST A THIRD RAY INTARSECTION
	C d2 BY DRAWING A RAY LEASING THE OBJECT
	AND (ROSSING THRU THE FOCAL POINT ON THE OBJECT
	Side of THE LENS. Apply INL RULE # 1 "IN REVERSE". IN
	WHAT DIRECTION DOES THIS RAY EXIT THE LEWS?
	· · · · · · · · · · · · · · · · · · ·
+ 70	A GOOD APPROX. THEY DO. DEVIATIONS FROM PEOFFOR CONVERSENCE ARE CALLED "ABBERATIONS".

b) WHAT DOES THE THIN ISN'S ER"
1+1 - + PREDICT FOR THE IMAGE DISTANCE dz
OF AN OBJECT LOCATED FAR AWAY
FROM THE LEWS [1.2. 0, >> f]?
10/ 11/17 of Puls +1 and Dese 745
10 ['GHI OF Read #1', WHAT 13825 / 113
TELL YOU ABOUT THE RELATIVE DIRECTION
OF THE RAYS FROM A DISTANT POINT SOURCE
· · · · · · · · · · · · · · · · · · ·
STRIKING A LENS!
\sim
· · · · · · · · · · · · · · · · · · ·

	* AKA	"Couiya78D"	Li647
C) SHOW THAT PARALLEL	RAYS	THAT	• •
i.e. 0 = ARENT PARALLEL TO THE	LENS	symme	TRY
Axis STILL CONVERGE A	DISTAN	nce f	• •
AWAY FROM THE LENS :			•••
· · · · · · · · · · · · · · · · · · ·	· · · · ·		• •
р.,,е що ?			• •
	· · · · · ·	· · · · · ·	• •
LENS CINTER			o o
	· · · · · ·	· · · · · ·	• •
			• •
	· · · · · ·	· · · · · ·	• •
			• •
. HOW FAR BELOW THE FOCAL	POINT		• •
Do THE RAYS CONVERCE			o o
IS YOUR ANSWER CONSISTS	NT 43	7 742	• •
THIN LENS EQUATION & THE	E PILA	Tion	• •
$h_2 = d_2 7$			• •
h_1 $\overline{d_1}$	· · · · · ·		• •
			0 0 0 0

o) WHY IS do NEGATIVE IF OIST
· DRAW TWO RAYS LEAVING THE OBJECT, ONE
DEMONSTRATING RULE #1 & THE OTHER
DEMONSTRATING RULE # 2 WHERE DO
THESE RAYS AppEAR TO CONVERCE?
e) SHOW THAT THE IMAGE DISTANCE de FOR A DISERGING LENS IS ALWAYS NEGATIVE
e) SHOW THAT THE IMAGE DISTANCE de FOR A DISERGING LENS IS ALWAYS NEGATIVE · SHOW THIS TWO WAYS, USING
 e) SHOW THAT THE IMAGE DISTANCE dz FOR A DISERGING LENS IS ALWAYS NEGATIVE SHOW THIS Two WAYS, USING 1: THE THIN LENS EQUATION 4
 e) SHOW THAT THE IMAGE DISTANCE & FOR A DISERGING LENS IS AWAYS NEGATIVE. • SHOW THIS TWO WAYS, USING 1: THE THIN LENS EQUATION 4 2: RAY TRACING [i.e. RULES #14 #2].

Qz	MIRRORS	SZE THE ANSWER TO QI(d) FOR DEFINITION OF THESE TERMS.
SI	tow, using	RAY TRACING (1.2.
a) 7	4 552 NEXT PAGE	# Z] THAT: FOR DESCRIPTION OF ANY OBJECT (d, > f or
	\$, < f) pro	DUCED BY A CONVEX MIRROR is
····································	S UPRIGHT 4 Fecal Point f Convex MIRROA	
b)	GONCANE MIRROR	12 IMAG2 of AN OBJECT LOCATED NSIDE THE FOCAL POINT OF A JIEROR (1.E. J. <f) also<br="" is="">PRIGHT AND VIRTUAL. 'TO AVOID CONFUSION, DRAW DNLY TWO RAYS [I.E. DO NOT ALSO APPLY RULE #1 "IN REVERSE" AS SHOWN IN THE PART (A) ANSWER]</f)>

RAY TRACING TRUCES FOR MIRRORS RAYS PARALLEL TO Ruis # Rule #2 : RAYS HITZING THE MIRROR @ THE MIRROR AKIS EXIT THE MIRROR AND INTERSECT THE MIRROR ALS AT THE IN A DIRECTION SO THAT THE focal point of THE MIRROR. TWO ANGLES MADE UT THE MIRROR AXIS ARE THE SAME. FOR CONVER MIRRORS, THE RAYS ONLY Appear To INTERSECT THE FORM POINT, WHICH LIES ON THE OTHER SIDE OF THE MIRPOR. RULE # 3 : RAYS I TO A TANGENT RETRACE THEIR PATH. RULE #1 RULE #1 IN Rule #2 focal point MIRROR ANIS ! RULE CONCAVE MIRROR

* 1 DON'T USE THIS RULE IN THE NOTES OR THESE QUESTIONS BUT INCLUDE HERE FOR COMPLETENESS.

C) WHERE WOULD YOU WANT TO PLACE A POINT SOURCE SO THAT 175 REFLECTED RAYS ARE "COLIMATED" [I.S. PARAUEL]? 1,7 CONCAVE MIRROR

C) ANOTHER CAMERA HAS A
LENS W/ A +5" FOCAL LENGTH of
AN "ADJUSTABLE FOCUS":
CAMERA
· TO WHAT DEPTH SHOULD THE LEWS - FILM DISTANCE (X) BE ADJUSTED IN ORDER
To capture AN iMALE OF THE MOON?
· IF THE MOON SUBTENDS AN ANGLE OF
ABOUT 1° IN THE SKY, HOW BIG OF A
Spot Does it Make on the Film (WHEN
in Focus]?

ANSWE	L 70 Q1(b) Con7.
• IF WHich	THIS IS ALSO THE DISTANCE AT LIGHT FROM A DISTANT OBJECT CONVERGES
Thras The L	THE RAYS FROM THE OBJECT THAT STRIKE INS ARE APPROXIMATELY PARALLEL :
Disjawt	APPROX. PARALLEL
	1 1

b) Appsar To CONVERCE HERE
$f = \frac{f}{\partial_z}$
d_2 NEGATIVE: IMAGE ON SAME SIDE OF LENS AS OBJECT. $F d_2 < 0 \longrightarrow h_2 = -d_2 \times \frac{h_1}{d_1} > 0$, so:
hz positive : IMAGE is on SAME SIDE OF LENS AKIS AS OBJECT.
· WHEN { hz is NEGATIVE , WE SAY THE IMAGE is WURETED, BECAUSE THE IMAGE AND OBJECT ARE ON OPPOSITE SIDES OF THE LENS AKIS. WE ALSO SAY IN THIS CASE THAT THE
IMALE is REAL, SINCE RAYS ACTUALY CONVERCE @ THIS POINT. Similarly, WHEN (by is positive) WE SAY THE IMALE IS UPRICHT OR NOT INVERTED SINCE OFFECT & IMALE ARE ON SAME SIDE OF AKIS. IN THIS CASE THE IMALE IS
VIRTUAL, SINCE RAYS ONLY APPEAR TO CONVERCE C THE MARE LOCATION.

* TRUE FOR IMAGES FORMED BY A SINGLE LONS / MIRROR .

e) RAY TRACING
OBJECT RULE #2 F IMACZ
· IMAGE ON SAME SIDE OF LENS
AS OBJECT.
$\rightarrow d_2 NZGATIVE$
· FROM THIN LENS EQUATION
$d_1 d_2 f \qquad \text{Dozsn't MATTZR} \\ if d_1 > f \text{or } d_1 < f \\ \\ \frac{1}{2} = \frac{1}{2} - \frac{1}{2} < 0 \qquad \checkmark$
dz f di NEGATIVE POSITIVE FOR DIVERSING LENS
· SO DIVERGING LENS ALWAYS FORMS UPRIGHT,
VIRTUAL MARE

QZ a) OBJECT IMAGE RULE #1 (IN REJERSE) J) f MIRROR RULE #2 Axis FOCAL Convex Mirror WE POINT FOR 522 THE IMAGE IS UP RIGHT SINCE THE IMAGE is on THE SAME SIDE of THE CONVEX MIRROR MIREOR AKIS AS. THE OBJECT ... IT IS ALSO SINCE RAYS ONLY APPTAR 7. VIETUAL CONVERCE C IMAGE LOCATION .

Q2 (a) CON7. FROM THE MIRROR SQUATION: IMA65 $\frac{1}{d_1}$ + $\frac{1}{d_2}$ - $\frac{1}{f}$ osyset h, $\frac{1}{d_2} = \frac{1}{f} = \frac{1}{d_1} < 0$ $\frac{1}{d_2} = \frac{1}{f} = \frac{1}{d_1} < 0$ $\frac{1}{d_2} = \frac{1}{d_1} = \frac{1}{d_1} < 0$ $\frac{1}{d_2} = \frac{1}{d_1} = \frac{1}{d_1} < 0$ $\frac{1}{d_1} = \frac{1}{d_1} = \frac{1}{d_1} = \frac{1}{d_1} < 0$ $\frac{1}{d_1} = \frac{1}{d_1} = \frac{1}$ Mires CONVEX MIRROR > d2 < O FOR CONVEX MIRRORS MIRROR CONVENTIONS d2 NEGATIVE : IMAGE AND OBJECT ON opposite Sides of Mirror [CONTRAST THIS W/ CONVENTION FOR LENSES] Since $h_2 = -\frac{h_1}{d_1} d_2 > 0$ WE also Have: POSIZIVE NEGATIVE FOR CONVENZION MIERORE OBJECT ON SAME · hz POSITIVE IMAGE 4 SIDS of MIRROR AXIS (SAME AS FOR LENSES)

Р)	
Ruiz #1 (IN REVIENZ) OBJECT Fuiz #1 Ruiz # 2	OBSERVATIONS • FROM THREE RAYS, DETERMINED USING RULES #1, #2, 4 #1 IN REVERSE, WE HAVE THREE PAIRS OF RAYS THAT ALL INTERSECT @ DIFFERENT POINTS (A, B, C)! • WE FIND THAT IMAGES FORMED BY RAYS THAT MAKE LARGE ANGLES W/ 26 RULE #2 & RULE! THE MIRROR AKIS ARE WERE! BLUREY, I.E. THE RAYS DO NOT ALL APPEAR TO COME
CONCAVE MIRROR • CENTER OF BURRY IMALE (dz) is GivEN BY MIEROR EQUATION: $\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f}$	FROM A SINGLE IMAGE point. NEVERTHELESS, THE IMAGE, HOWEVER BLURRY, DOES APPAR UPRIGHT [OBJECT & IMAGE ON SAME SIDE OF MIRROR AKIS] AND IS VIRTUAL [RAYS ONLY APPEAR TO DRIGINATE FROM IMAGE LOCATION] This is CONSISTENT WT MIRROR EQUATION: $\frac{1}{d_2} = \frac{1}{f} - \frac{1}{d_1} < D$ $d_2 < 0$, which MEANS IMAGE IS UPRIGHT & VIRTUAL.
"ABERRATED".	

(c) PUT @ FOCAL POINT: ALL RAYS PARALLEL POINT SOURCE RULE REVERSE CONCAVE MIRROR

Q3	$f = z'', \partial_z = 4''$
a)	$\frac{1}{d_1} = \frac{1}{f} - \frac{1}{d_2}$
	$= \frac{1}{2"} - \frac{1}{4"} = \frac{1}{4"}$
	> d, = 4" ✓
	$h_1 = 2''$ (Bug Height)
· · · · · · · · · · · ·	$h_2 = -\frac{d_2}{d_1} \times h_1 = -\frac{4''}{d_1} \times 2'' = -2''$
FILM NEEDS	⁷ • di 4
BC AI CHIII	7/13
LARGE	(1.2. 1 × MAGNIFICATION;) INN9472D
LARGE	(1.2. 1× MAGNIFICATO,) INNERTED CAMERA
	(1.2. 1 × MAGNIFICATION;) INNERTED
	(1.2. 1 × MAGNIFICATION;) INVERTED CAMERA FILM FILM IN FOCUS
LAR GE	(1.2. 1 × MAGNIFICATION;) INVERTED CAMERA FILL FILL FILL W FOCUS
	(1.2. 1 × MAGNIFICATION;) INVERTED CAMERA FILL FILL FILL FILL FILL FILL FILL FIL

b) IMAGE of LENS #1: ţ -J2 2 = 4' LENS #1 4' f Z INVERTED LENS #2: IMAGE of = 2', $\frac{1}{d_z} = \frac{1}{f} \cdot \frac{1}{d_1} = \frac{1}{1'}$ $d_1 = -6' - 4'$ = <u>`</u> $\rightarrow d_2 =$ MAGE FROM LINS #2 of IMAGE FROM LENS #2 LENS upright . PLACE SCREEN HERE WHERE RAYS FROM CANDL 4 if CONVERGING 1.2. = Z' Z LENS #2 DIVERGING? SAME, SO · IMAGE FROM LENS #1 742 is 3-2' 1 --1' 2' 2 LENS #2 f NEGATIVE! RAYS NEVER CONVERCE ANYWHERE CAN'T USE SCREEN TO VIRTUAL IMAGE ſ,

c)	d, DISTANCE FROM MOON TO LENS f focal LENGTH = +5" << d,
· · · · · · · ·	MOON in FOCUS WHEN X = d2
	$ \omega_{H2RE} = \frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f} $
· · · · · · · · ·	$ \longrightarrow \frac{1}{d_2} = \frac{1}{f} - \frac{1}{d_1} $
	$\longrightarrow d_2 = f$, so set $x = 5$
	FROM TOP OF MOON Spot Sizz
	$\frac{1}{2} (1) = 2 f + av \frac{3}{4} (1) = 2 \cdot 5 \cdot \frac{1}{4} av \frac{1}{4}$
	FROM BO770M OF MOON (SMALL ANGLE) Apprent =
· · · · · · · · · ·	