LECTURE 22 QUESTIONS

· · · · · · · · · · · · · · · · · · ·	
Q1 a) IF THE CURRENT	
THROUGH AN INDUCTOR	
IS INCREASING CA RATE	
OF IMA, AND THE INDUCTOR	· · · · · · ·
HAS AN INDUCTANCE L = 500, H,	
WHAT IS THE VOLTAGE ACROSS	
THE INDUCTOR? V+ V_	· · · · · · ·
ΔE	
· · · · · · · · · · · · · · · · · · ·	
b) BELOW IS THE PLOT OF THE CURRENT THEM AN INDUCTOR US. TIME. PLOT THE VOLTAGE ACROSS THE INDO	J(t) LOTOR
b) BELOW IS THE PLOT OF THE CURRENT THRU AN INDUCTOR VS. TIME. PLOT THE VOLTAGE ACROSS THE INDU THE THE SAME (TRAPH :	J(t) U CTO R
b) BELOW IS THE PLOT OF THE CURRENT THRU AN INDUCTOR US. TIME. PLOT THE VOLTAGE ACROSS THE INDU ON THE SAME GRAPH:	J(t) uotor
b) BELOW IS THE PLOT OF THE CURRENT THRU AN INDUCTOR VS. TIME. PLOT THE VOLTAGE ACROSS THE INDO ON THE SAME GRAPH: (T(+) = - at ²	J(t) uotor
b) BELOW IS THE PLOT OF THE CURRENT THE AN INDUCTOR VS. TIME. PLOT THE VOLTAGE ACROSS THE INDO ON THE SAME GRAPH: $\int I(t) = \frac{1}{2}at^{2}$	J(t) uotor
b) BELOW IS THE PLOT OF THE CURRENT THEM AN INDUCTOR VS. TIME. PLOT THE VOLTAGE ACROSS THE INDO ON THE SAME GRAPH: $I(t) = \frac{1}{2}at^{2}$ PARABOLA	J(t) uotor
b) BELOW IS THE PLOT OF THE CURRENT THRU AN INDUCTOR VS. TIME. PLOT THE VOLTAGE ACROSS THE INDO ON THE SAME GRAPH: $\int I(t) = \frac{1}{2}at^{2}$ PARABOLA	J (t)
b) BELOW IS THE PLOT OF THE CURRENT THEM AN INDUCTOR US TIME. PLOT THE VOLTAGE ACROSS THE INDU ON THE SAME GRAPH: $\int I(t) = \frac{1}{2}at^{2}$ $\int J(t) = \frac{1}{2}at^{2}$ $\int J(t) = \frac{1}{2}at^{2}$	J (t)
b) BELOW IS THE PLOT OF THE CURRENT THEM AN INDUCTOR VS. TIME. PLOT THE VOLTAGE ACROSS THE INDU ON THE SAME GRAPH: $\int I(t) = \frac{1}{2}at^{2}$ PARABOLA time	J (t)
b) BELOW IS THE PLOT OF THE CURRENT THRU AN INDUCTOR VS. TIME. PLOT THE VOLTAGE ACROSS THE INDU ON THE SAME GRAPH: $I(t) = \frac{1}{2}at^{2}$ fime	J (t)
b) BELOW IS THE PLOT OF THE CURRENT THRU AN INDUCTOR VS TIME. PLOT THE VOLTAGE ACROSS THE INDI ON THE SAME GRAPH: $I(t) = \frac{1}{2}at^{2}$ fime	J (t)

C) plot $V(t)$
· · · · · · · · · · · · · · · · · · ·
\bullet_{t}
d) EXPLAIN HOW PART (C) DEMONSTRATES
THE PRINCIPLE, IN STEADY STATE AN
INDUCTOR ACTS LIKE A SHORT-CIRCUIT."
e) IS THIS PRINCIPLE CONSISTENT
W/ WHAT YOU KNOW INDUCTORS TO
BE MADE OF?
BONUS: f) TWO INDUCTORS OF EQUAL INDUCTANCE ARE DRIVEN W/
A.C. CURRENTS OF EQUAL AMPLITUDES
BUT DIFFERENT FREQUENCIES f, < fz
· WHICH HAS THE LARGER INDUCED
VOLTAGE ?
· · · · · · · · · · · · · · · · · · ·

QZ SERIES RL SERIES CIRCUIT
REFER TO THE RESULT WORKED OUT FOR THE CURRENT IN THE
RL SERIES CIRCUIT
$V \stackrel{+}{=} R \stackrel{-}{=} I \qquad I \qquad I(t)$ $I = 0 \qquad C \qquad T = L/R \qquad t$
a) USE OHM'S LAW TO FIND:
$\cdot V_R C t = 0$
$\cdot V_R \text{ as } t \longrightarrow \infty$
b) USE K.V.L. TO FIND
· V, C += >
$\stackrel{*}{\downarrow}$. V_L As $L \rightarrow \infty$
"IS THIS CONSISTENT W/ THE PRINCIPLE,
STATED IN QI, THAT,
"IN STEADY-STATE AN INDUCTOR ACTS LIKE A SHORT CIRCUIT." * COMPARE THIS W/ THE PREDICTION FROM THE DEFINING RELATIONSHIP FOR AN INDUCTOR: V=L DI DEFINING RELATIONSHIP FOR AN INDUCTOR: V=L DI DEFINING RELATIONSHIP FOR AN INDUCTOR: V=L DI

b) $(C \ M \ R \ M \ R \ M \ R \ M \ R \ M \ M$
d) COMBINE RESULT FROM PARI a)
W/ RESULT FROM PART C)
T_{0} Show: A
$\Delta I_{L} = -I_{L} \text{where} T = \frac{L}{R}$
Δt T
C) (A) IS WHAT WE WILL NEED TO FIGURE
out IL(t) FOR { 70. FOR STARTERS
THOUGH, SIMPLY MAKE A POINT ON
THE IL VS. & GRAPH FOR THE
INDUCTOR CURRENT IL C t=0:
(SEE NEXT PAGE):

(e) CONT. : MARK $I_L(t) \ (e \ t = 0)$
· · · · · · · · · · · · · · · · · · ·
I _L (+)
· · · · · · · · · · · · · · · · · · ·
م (د)
f) USING (A), DETERMINE THE RATE OF
CHANGE $\frac{\Delta I}{\Delta t}$ $C = 0$
· NOTE THE SIGN OF THE SLOPE
· DRAW A LINE STARTING FROM
THE POINT YOU MARKED IN
(e), EXTENDING TO THE
HORIZONTAL (t) AXIS.
· WHERE DOES IT INTERSECT
THE HORIZONTAL AXIS?
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

g) NOW, USE (A), ALONG W/ THE
"STEADY STATE CONDITION (NO CHANGING
CURRENTS OR VOLTAGES, TO PREDICT THE
INDUCTOR CURRENT IL AS & -> 00
· DRAW A HORIZONTAL LINE
THAT INTERSECTS THE VERTICAL
(IL) AXIS AT THIS VALUE
h) FINALLY, DRAW A SMOOTH CLRVE THAT: · STARTS (? THE POINT MARKED IN STEP (e), THEN
• MOVES INITIALLY ALONG THE LINE DRAWN IN PART (f), THEN:
"PEELS OFF" THIS LINE, AND GRADUALLY
Approaches THE LINE FROM PART (g)
As time Goes on $(t \rightarrow \infty)$

DO YOU RECALL THE NAME OF THIS CURVE? MATHEMATICALLY IT HAS THE (i) $Form I_{L}(t) = I_{o}e^{-t/T}$ · CHECK THAT THIS EQUATION AGREES W/ your ANSWERS FOR PARTS (C) $q(q), 1 \in \mathcal{O} \neq 0 \quad q \rightarrow \infty$ · WHEN DOES THIS FORMULA PREDICT THAT IL(t) Goes To 1 OF ITS INITIAL VALUE? DOES THIS (ROUGHLY) AGREE W/ YOUR GRAPH? (e = 2.72) WHEN DOES I. (t) GO TO Bonus 1/2 OF ITS INITIAL VALUE?

ANSWERS
$Q[a] V = L \frac{\Delta I}{\Delta t}$
= 500 mH. ImA
= 500 mV $= .5 V$
b) ANALOGY W PROJECTILE MOTION: $\cdot iF \times (t) = \frac{1}{2}at^{2}$
-7HEN V(t) = at
· So if $L(t) = \frac{1}{2}at$ · Then $\Delta I(t) = at$
$\longrightarrow V(t) = L \frac{\Delta I(t)}{\Delta t} = Lat$
$\int J(t) / I(t) $
c) CURRENT CONSTANT $\rightarrow \frac{\Delta I}{\Delta t} = 0$ J(t) $\downarrow V(t) = 0$ t

d) IN (C) WE FIND THAT IN STEADY-STATE, WHERE CURRENTS ARE NOT CHANGING THE VOLTAGE ACROSS AN INDUCTOR is ZERO, NO MATTER WHAT (STEADY!) CURRENT CONDUCTS THRU IT. THIS V=0 FOR ANY I BEHAVIOR is JUST HOW SHORT - CIRCUITS BEHAVE e) WELL, INDUCTORS ARE MADE OF (CONDUCTING) WIRE, SO IT iS NOT SURPRISING THAT THEY ACT LIKE SHORT-CIRCUITS (WHEN CURRENT is STEADY) I, (t) AMPLITUDE? $f)_{I_2(t)}$ $\Delta T_{2} > \frac{\Delta T_{1}}{\Delta t} \qquad T_{2} = \frac{1}{C_{2}} t \qquad T_{1} = \frac{1}{f_{1}}$ $> V_2 = L \frac{\Delta I_2}{\Delta t} > L \frac{\Delta I_1}{\Delta t} = V_1$

QZ FROM GRAPH: · I=O C t=O [OUR INITIAL ASSUMPTION] · I -> V'R AS t -> 00 ("STEADY-STATE"] a) FROM OHM'S LAW $(V_{R} = IR)$ $V_R = (o) \times R = o C t = o$ $V_R \rightarrow V_R \times R = V AS t \rightarrow \infty$ b) K.V.L.: $V = V_R + V_L \rightarrow V_L = V - V_R$ so: $V_L = V - (o) = V C t = 0$ $\cdot = V - (V) = D$ as $t \rightarrow \infty$ * AGAIN WE SEE THAT VOLTAGE ACROSS INDUCTOR is ZERD IN STEADY STATE, EVEN THOUGH CURRENT is NON-ZERO $(I \rightarrow V/R)$, I.E. INDUCTOR ACTS LIKE SHORT-CIRCUIT. WE ALSO SEE SLOPE OF I(t) FLATTENING OUT AS $t \rightarrow \infty$, i.e. $\frac{\Delta I}{\Delta H} \rightarrow 0$ So AGAIN $\omega \epsilon$ FIND $V_L = L \frac{\Delta I}{\Delta t} \longrightarrow O$ IN STRADY STATE

C) OHM'S LAW $V_R = I_R R$ INDUCTORS $V_L = L \frac{\Delta I_L}{\Delta t}$
$J_{R}R = V_{R} = V_{L} = L \frac{\Delta I_{L}}{\Delta t}$ (b) d) $PLUGGING iN \left[FROM(a)\right] J_{R} = -J_{L}$ $INTO(c) \ US \ G2T$
$-I_{L}R = L \frac{\Delta I_{L}}{\Delta t}$ $\longrightarrow \frac{\Delta I_{L}}{\Delta t} = -I_{L} \times \frac{R}{L} = -\frac{I_{L}}{L_{R}} = -\frac{I_{L}}{T}$
e) By Assumption : $I = I_0 e t = 0$
$\begin{bmatrix} \mathbf{J}_{\circ} & -\mathbf{k} \\ \mathbf{J}_{L}(\boldsymbol{\epsilon}) \\ \mathbf{o} & \boldsymbol{\epsilon} \end{bmatrix}$

Io Ĩ, , e til2/4 2 e +1/2/7 2 = $ln(e^{tv_s/r}) = lnZ$ t'2/7 = ln Z $t_{1/2} = ln 2 \times -$.69 T ¥ I. - * I.(+) Joz Loots Like ABOUT - 697