LECTURE 21 Questions

11) CALCULATE THE DIFFERENCE \overline{M} FILLY $\Delta \Phi = \Phi(\theta = 0^\circ) - \Phi(\theta = 90^\circ)$: $\mathbb{Z}_{\mathbb{Z}}$ $\theta = 0^\circ$ $O = 90^\circ$ NNG ENERAL, $E = BA \cos \theta$. WHAT IS THE TIME OF THAT IT TAKES FOR THE LOOP TO ROTATE 90? · HINT: IT DEPENDS ON THE FREQUENCY! COMBINE TO DETERMINE $\frac{\Delta \Xi}{\Delta t} = 2mF$ $(1 Log p)$ HOW DOES EMP DEPEND ON FREQUENCY?

If we want the bulb to glow brightly, we need a large voltage across the bulb: $\frac{1}{\sqrt{2}}$ $\left(\frac{1}{R}\right)^2$

 $($ $P =$

D.

so we want a large emf induced in our loop, and therefore want to turn the crank as fast as possible (from part [a] you found that emf is proportional to frequency).

Even in the absence of friction, the operator of this hand-crank generator will find it harder to keep the loop rotating as he/she increases the frequency of rotation. To help you figure out why this happens, I've broken the chain of reasoning into multiple steps:

 (i) • FROM OHM'S LAW AND KIRCHOFF'S CURRENT LAW, ARGUE THAT CURRENT IN THE coil IS PROPORTIONAL TO THE INDUCED EMF, AND SO PROPORTIONAL TO THE ROTATION FREQUENCY .

In the diagram above, draw the direction of the induced current and induced magnetic field as the loop as rotated clockwise. Replace the current-carrying loop with its bar-magnet equivalent, and show that this bar-magnet opposes the clockwise-rotation.

Qualitatively, how does the strength of this effective bar-magnet relate to the frequency of rotation?

The changing magnetic flux induces an electric field $\vec{\epsilon}_{\text{max}}$ and $\vec{\epsilon}_{\text{max}}$ in the two coils in the direction parallel to the current that would oppose the change in flux.

To illustrate I have drawn \mathcal{E}_{w_1} . Following the example, draw \vec{E}_{max}

Since the coils are made of conducting material. the net electric field in either coil must be very small. The induced fields $\vec{\epsilon}_{\text{mea}}$ and $\vec{\epsilon}_{\text{mea}}$ are almost perfectly cancelled by additional electric fields $\vec{\epsilon}_{y_1}$ and $\vec{\epsilon}_{y_2}$ created by the electric potential differences (voltages) between the ends of the loops.

 $\binom{1}{1}$

Draw $\vec{\epsilon}_{\text{N}}$ and $\vec{\epsilon}_{\text{N}}$. Knowing that electric field lines of $\vec{\epsilon}_{\text{N}}$ and $\vec{\epsilon}_{\text{N}}$ point from higher electric potential to lower electric potential, show:

 $> \Delta \overline{\Phi} = \overline{B}A$ Δt = $7imz$ 70 Go FROM
 $\theta = 0$ $\rightarrow \theta = 90$ 4 XTIME To Go FROM $\theta = 0 \rightarrow \theta = 360$ $=$ $\frac{1}{4} \times T$ \leftarrow P^{reioD} $\frac{1}{4} \times \frac{1}{f}$ FREQUENCY \Rightarrow $\epsilon m \int = \frac{\Delta \Phi}{\Delta t}$ $\frac{BA}{1} = 4fBA$ $\frac{1}{4}$ $\alpha +$

Induced current in loop makes it effectively a bar magnet that is aligned with the field from the permanent magnet, and will resist attempts to rotate it out of alignment.

 $\left(\bigcup\right)$ DRAW CURRENTS THAT WOULD OPPOSE INCREASE IN CLOCKWISE FLUX: B_{1} $22/$ $\sqrt{14}$ $\overline{\mathbf{B}}$ $\overline{\mathbf{B}}$ \mathbf{B} \mathbf{L} $*$ (0) ANTI-PARALLEL) RESpectively.

 \vec{r} $\left(1\right)$ $1F$ \vec{E}_V + \vec{E}_{1ND} cancer, $\frac{1}{\sum_{n=1}^{n}$ $\sqrt{2}$ $\frac{E_{max}}{E_{max}}$ \sqrt{a} $\sqrt{s_{2}}$ $\sqrt{\mathbf{g}}$ · SINCE Er points FROM HIGH POTENTIAL TO LOW POTENTIAL: V_{Al} > V_{B1} , V_{A2} > V_{B2}

