LECTURE 21 QUESTIONS

Q1) GENERATORS
a) CONVINCE YOURSELF
THAT THE EMF GENERATED
By A LOOP/COIL ROTATING
IN A MAGNETIC FIELD IS
PROPORTIONAL TO THE
FREQUENCY OF ROTATION.
Do THIS IN TWO WAYS:
(i)
· ON THE NEXT PAGE I'VE MADE A
FOR ONE FULL ROTATION WHEN
THE ROTATION FREQUENCY is f
$(z - f = H_z)$:

$\overline{\mathbf{E}}(t)$
Time
· NOW, SUPERIMPOSE ON THE PLOT
THE FLUXES $\Phi_2(t) + \Phi_{1/2}(t)$ WHERE THE ROTATION FREQUENCIES
· WHICH OF THE THREE CASES HAS
· NOTE : WHY is THE AMPLITUDE OF
ALL THREE SINE WAVES THE SAME?

11) · CALCULATE THE DIFFERENCE IN
$F^{LUX} \Delta \overline{\Phi} = \overline{\Phi}(\Theta = O^{\circ}) - \overline{\Phi}(\Theta = 90^{\circ});$
$\theta = 0^{\circ}$ $\theta = 90^{\circ}$
[IN GENERAL, = BACOSO]
· WHAT IS THE TIME AT THAT IT
TAKES FOR THE LOOP TO ROTATE 90?
· HINT : IT DEPENDS ON THE FREquency
• COMBINE TO DETERMINE $\frac{\Delta \overline{\Xi}}{\Delta t} = \Xi m F$
(1 Loop)
· HOW DOES EM & DEPEND ON FREQUENCY?
· · · · · · · · · · · · · · · · · · ·

If we want the bulb to glow brightly, we need a large voltage across the bulb:

 $(P = \sqrt{P})$

so we want a large emf induced in our loop, and therefore want to turn the crank as fast as possible (from part [a] you found that emf is proportional to frequency). Even in the absence of friction, the operator of this hand-crank generator will find it harder to keep the loop rotating as he/she increases the frequency of rotation. To help you figure out why this happens, I've broken the chain of reasoning into multiple steps:

(i)) OHM'S LAW AND KIRCHOFF'S FROM CURRENT LAW, ARGUE THAT THE CURRENT IN THE COIL IS PROPORTIONAL TO THE INDUCED EMf, AND SO PROPORTIONAL TO THE ROTATION FREQUENCY

In the diagram above, draw the direction of the induced current and induced magnetic field as the loop as rotated clockwise. Replace the current-carrying loop with its bar-magnet equivalent, and show that this bar-magnet opposes the clockwise-rotation.

Qualitatively, how does the strength of this effective bar-magnet relate to the frequency of rotation?

Since the coils are made of conducting material, the <u>net</u> electric field in either coil must be very small. The induced fields \vec{E}_{me1} and \vec{E}_{me2} are almost perfectly <u>cancelled</u> by additional electric fields \vec{E}_{v1} and \vec{E}_{v2} created by the electric potential differences (voltages) between the ends of the loops.

ii)

Vai

Draw $\vec{E}_{,v}$ and $\vec{E}_{,v}$. Knowing that electric field lines of $\vec{E}_{,v}$ and $\vec{E}_{,v}$ point from higher electric potential to lower electric potential, show:

ENOZ

$\longrightarrow \Delta \overline{\Phi} = \overline{B} A$
$\Delta t = 7im \in 70 \text{ Go } prom$ $\Theta = \rho^{\circ} \longrightarrow \Theta = 9\rho^{\circ}$
$= \frac{1}{4} \times \text{Time To Go From}$ $= \frac{1}{4} \times \text{Time To Go From}$ $= \frac{1}{4} = \frac{1}{2} = \frac{1}{2$
$= \frac{1}{4} \times T \ll p_{\text{priod}}$
$= \frac{1}{4} \times \frac{1}{f} = FREQUENCY$
$\longrightarrow \Sigma m f = \frac{\Delta \overline{\Phi}}{\Delta t} = \frac{BA}{1/4f} = 4 f BA$
\prec $+$

Induced current in loop makes it effectively a bar magnet that is aligned with the field from the permanent magnet, and will resist attempts to rotate it out of alignment.

BIND

Q2) a)
$\frac{\sqrt{z}}{\sqrt{z}} = \frac{N_z}{N_1}$
$\longrightarrow V_2 = \frac{N_2}{2} V_1$
$= \frac{Z}{3} \times \int \sqrt{A \cdot C}.$
$b) V_z = o!$
BATTERY OUTPUTS STEADY (D.C.) VOLTAGE, NEED CHANGING
NOLTAGE FOR INDUCTION.

C) DRAW CURRENTS THAT WOULD OPPOSE INCREASE IN CLOCKWISE FLUX: BIND 2 I2 / BINDI 21-5 · EIND, & EINDZ RUN PARALLEL TO I, & IZ, RESPECTIVELY. (ØANTI-PARALLEL)

III) · THEREFORE, $V_1(t) - V_1(t) = V_2(t) - V_2(t) = V_2(t) = V_2(t) = V_2(t)$
IN-PHASE (POSITIVE PEAK OF
ONE LINES UP W/ POSITIVE PEAK OF OTHER).
d) NOW THEY ARE 180° OUT OF PHASE
(REDO STEP (i) FROM (c) TO SEE THIS)