LECTURE 23 NOTES

ELECTROMAGNETIC WAVES

Summary · A LOT WE CAN SAY ABOUT ELECTROMAGNETIC WAVES, BUT | ONLY WANT YOU TO TAKE AWAY THE FOLLOWING: · MAKWEUS HypoTHESIS: CHANGING É FIELDS GENERATE É FIELDS. THIS, COMBINED WT FARADAY'S LAW, IMPLIES EXISTENCE OF WAVES OF E + & FIELDS THAT CAN PROPAGATE IN EMPTY SPACE (VACUUM). IN VACUUM, E.M. WAVES TRAVEL W/ A $SPEED C = \frac{1}{\sqrt{\mu e^2}} = 3.10 \frac{m}{3}$ · E.M. WAVES ARE CHARACTERIZED By THEIR FREQUENCY $(f)/WAVELENGTH(\lambda)(f\lambda=C)$ AND VISIBLE LIGHT ARE E.M. WAVES W7 WAVELENGTHS IN THE RANGE OF 400 - 700 nm. VIOLET RED

Summary CONTINUED:					· · · · · · · · · · · · · · · · · · ·	
$\vec{E} \perp \vec{B} \qquad \qquad$						
$I = \frac{1}{2} \cdot \frac{EB}{\mu o}$ Amplitudes		· · ·	•	•		•
	· · ·	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · · · · · · · · · · · · · · · · · ·	

MAXWELL'S HypoTHESIS SO FAR, WE KNOW THAT, VIA E.M. INDUCTION, WE CAN TRANSMIT A.C. VOLTAGE FROM POINT TO ANOTHER LIKE SO: A.C. Voltage A.C. VOLTME (v IRON CORE CHAIN OF INDUCTION E pushes Charge, which GENERATES I WHICH GENERATES B WHICH INDUCES E WHICH PUSHES CHARGE WHICH ... · WE KNOW WE DON'T NEED THE IRON CORES, THAT THEY ONLY HELP TO TRAP/CONCENTRATE THE B FIELD LINES. As IT STANDS, THOUGH, IT SEEMS THAT THE COILS ARE INDESPENSIBLE . TO GENERATE B FIELD, (IT SEEMS) WE NEED CURRENT (I), AND SO WE NEED THE CHARGE CARRIERS (ELECTRONS) IN THE WIRE.

MAXWELL'S Hypothesis · Scottish Physicist JAMES CLERCK MAXWELL (1831-1879) ELECTRIC CURRENTS ARE NOT NECESSARY FOR GENERATING MAGNETIC FIELDS - A CHANGING ELECTRIC FIELD IS SUFFICIENT A.C. VOLTMETER VOLTAGE VER') ("TRANSMITTER") EMPTY SPACE CAN TRANSMIT SIGNALS ACROSS EMPTY SPACE · NOTE THE Symmetry (FARADAY'S LAW MAXWELL'S Hypothesis · CHANGING B ----• CHANGING $\vec{E} \rightarrow \vec{B}$ Symmetry implies A "SELF-SUSTAINING" CYCLE: Δt Δt

ELECTROMAGNETIC WAVES · MAXWELL'S CALCULATIONS REVEALED THAT THIS SELF - SUSTAINING CYCLE COULD Give Rise To WAVES OF E + B FIELDS IN EMPTY SPACE "SNAPSHOT" C t = 0 SNAPSHOT · MAXWELL FOUND THAT WAVES SHOULD $\frac{\Delta x}{\Delta t} = \frac{1}{\sqrt{\mu o \epsilon_o}} = 3 \times 10^8 \frac{m}{s},$ TRAVEL C A SPEED FROM MAGNETISM FROM ELECTRICITY Compare W/ WAVES ON STRING SERWAY 13.9 t = 0: $V = \frac{\Delta x}{\Delta t} \left(= \sqrt{T/\mu} \right)$ = ∆t "SEE NEXT PAGE FOR MORE

Spred of Light
· MAXWELL FOUND THE VELOCITY _ 3.10 m S
TO BE CLOSE TO THE KNOWN SPEED OF LIGHT, DENOTED BY THE SYMBOL C.
TO Him This STRONGLY SUGGESTED THAT LIGHT IS AN ELECTROMAGNETIC WAVE!
TOGETHER ("UNIFIED") THE SUBJECTS OF
ELECTRICITY AND MAGNETISM, HE ALSO
UNIFIED EAM W/ THE STUDY OF LIGHT
(1.E. Oprics)!

SPEED of LIGHT
· IN EMPTY SPACE, THIS SPEED C OF E.M. WAVES IS THE SAME, INDEPENDENT OF:
· THE WAVELENGTH / FREQUENCY, OR
(SEE LATER)
ALICE ALICE BOB C C V=0 THE FRAME OF REFERENCE E.M. WANE M M C SPECIAL RELATIVITY: V=0 ALICE AND BOB MZASURE THE SAME SPEED C FOR THE S M (DOWE)
· HOW CAN THIS BE?! · THIS FACT HAS STARTLING IMPLICATIONS, INCLUDING: "RELATIVITY OF SIMULTANEITY" · TWO EVENTS OCCURRING AT THE SAME TIME IN ONE REFERENCE FRAME MAY OCCUR @ DIFFERENT TIMES IN ANOTHER!

* WHEN E.M. WAVES TEAVEL IN MATTER (E.G. WATER, GLASS, AIR), THEIR SPEED CAN DEPEND ON THEIR WAVELENGTH (OR COLOR, FOR VISIBLE LIGHT). THIS EFFECT IS CALLED <u>DISPERSION</u>.

⁽RED, ORMER, VELLOW, GREEN, BLUE, DURPLE) FITS THIS DESCRIPTION.

ELECTROMAGNETIC SPECTRUM: · VISIBLE LIGHT ONLY SMALL PART OF THE FULL SPECTRUM OF E.M. WAVES WAVELENGTH FREQUENCY (\mathbf{x}) STI RADIO STI | m - | Km | DO kHz - 10 GHz MicrowAves 106H2 — 1TH2 1mm - 1m INFRARED (HEAT, FIBER INTERNET) lum-lmm THE- 100THE ///// VISIBLE LIGHT 400 mm - 700 m 400 - 750 THZ ULTRA - VIOLET ON RADIATION 10 - 100nm 10 - 10 17 Hz X-RAYS (1 = SIZE OF MOLECULES) 1017 10 Hz .1nm - 10nm GAMMA (V) RAYS > 10 Hz <.1nm

E. M. WAVES - PROPERTIES WAVES ARE TRANSVERSE: · E 4 B FIELDS ARE 1 TO n, THE DIRECTION OF PROPOGATION. · E & B FIELDS ARE ALSO I TO ONE ANOTHER. · AMPLITUDES OF E + & ARE PROPORTIONAL : $B = \frac{\epsilon}{c}$ B "TRACKS" (+ VICE VERSA) TO DETERMINE A : . pointer FINGER TOWARDS MIDDLE FINGER TOWARDS B, . THUMB POINTS TOWARDS A

INTENSITY OF E.M. WAVES
· EM WAVES CARRY ENERGY
MONOCHROMATIC
· INTENSITY OF E.M. WAVE
$I = \frac{1}{2} \times \frac{EB}{M_0} A^{MPLiTUDZS}$
· Example:
· RADIO STATION GENERATES RADIO WAVES
THAT HAVE ELECTRIC FIELDS OF ABOUT
IV/M A FEW MILES FROM THE STATION.
$T = \frac{1}{2} \cdot \frac{EB}{m_0} = \frac{1}{2} \cdot \frac{E \cdot E/c}{m_0} = \frac{1}{2} \cdot \frac{E^2}{m_0}$ $= \frac{1}{2} \frac{\left(\frac{1}{m_0}\right)^2}{\frac{1}{4\pi \cdot 10^{-7}}} = \frac{1}{4\pi \cdot 10^{-7}} \frac{1}{m_0} \frac{1}{m_0} \frac{1}{m_0}$
· COMPARE TO INTENSITY OF SO WATT LIGHT-BULB /M AWAY:
$Im = \frac{P}{A} = \frac{50W}{4\pi (1m)^2} = 4\frac{W}{m^2}$
- 7000 x 10/082 IN 12N52.