NOTE: THIS EXAMPLE is JUST
TO Give you A
HANDS -ON EXAMPLE OF MUTUAL
& SELF INDUCTANCE. THE ANALYSIS
is NOT TOO HARD TO FOLLOW BUT
IT WOULD BE DIFFICULT TO SOLVE
A SIMILAR PROBLEM ON YOUR OWN.
DON'T WORRY ABOUT HAJING TO SOLUE
THIS PARTICULAR PROBLEM ON AN EXAM.
JUST TRY TO UNDERSTAND CONCEPTUALLY.

V+ R HEATER J J L Coll #2
· MUTUAL INDUCTANCE (M)
BETWEEN TWO COILS LEADS 10
VOLTAGE ACROSS COLL FROM
A.C. CURRENT I, (t):
$V = V_{+} - V_{-} = M \frac{\Delta I_{1}}{\Delta t}$ = $M \frac{2\pi}{T} I_{1} (A.C. AMPLITUDE)$ $(T = \frac{1}{t} \text{ is } PERIOD$ OF OSCILLATION)
· VOLTAGE DRIVES CURRENT I2= V/R IN HEATER.
· Since $P = I_2 \times V$ in resistor, Should WE
MAKE R SMALL TO MAXIMIZE POWER TO
HEATER?

 $\rightarrow M_{I_1} = \frac{T}{2\pi} \vee + L_{I_2}$ ANALOGY: MAXIMIZE ARZA Sum FixED, ENCLOSED BY FENCE OF FIXED PERIMETER: WANT TO MAXIMIZE a b fixed A = & MAKE IT A SQUARE PRODUCT & VI2 = P a . POWER · HEATER DOWER OPTIMIZED WHEN $\frac{T}{2T}V = LI_2$ 27 $(rearranging) = \frac{L}{V/I_2} = \frac{L}{R} = \frac{T}{2\pi}$ units of Time!· SO WE WANT TO PICK OUR HEATER RESISTANCE R SO THAT THE "TIME CONSTANT" T = L OF OUR HEATER + COIL COMBO MATCHES THE PERIOD OF OSCILLATION T OF THE CURRENT I, (t) Supplying THE POWER * W/IN A FACTOR OF 2TT