LECTURE 22 NOTES

INDUCTORS + RL CIRCUITS

· EACH EFFECT IN THE CHAIN
is proportioNAL TO THE
"CAUSE" PRECEDING IT
$I_1 \prec \overline{B}_1 \prec \overline{\Phi}_2 \prec \frac{\Delta \overline{\Phi}_2}{\Delta t} \prec \Sigma m f_2 = V_2$
"A CHANGE IN THE CURRENT THRU
$\frac{\Delta L}{\Delta t} \ll V_z \qquad \begin{array}{c} Loop #1 \text{INDUCES} A \text{Voltage} \\ A CROSS Loop #2." \end{array}$
· THE CONSTANT FOR THIS
PROPORTIONALITY is CALLED
THE "MUTUAL INDUCTANCE" (M) OF
Loops # 4 # 2 :
$V_z = M \Delta I_1$ Δt
* THIS IS A RESULT OF THE SUPERPOSITION PRINCIPLE FOR ELEC. & MAG. FIELDS.

SELF - INDUCTANCE
. This "CHAIN OF INDUCTION" CAN
OCCUR W/IN A SINGLE LOOP/COIL!
$\frac{\Delta \Phi}{\Delta t} \rightarrow \frac{\Delta \Phi}{\Delta t} \rightarrow \epsilon m f = V$
· SO A LOOP / COIL HAS A "SELF - INDUCTANCE" (L) SUCH THAT:
$\bigvee = L \frac{\Delta I}{\Delta t}$
• S.I. UNIT OF INDUCTANCE is THE HENRY (H) $1H = 1 \frac{V \times s}{A}$ OR JUST "INDUCTANCE" FOR SHORT

· INDUCTANCES IN GENERAL DIFFICULT TO CALCULATE, But FOR A LONG, TIGHTLY - WOUND COIL (AKA A "SOLENOID") WE HAVE Mo = 1.257.10 H/m N : # Loops $L = \mu_0 N^2 A$ A : LOOP AREA COIL LENGTH SOLENOID (L = / mH if To SCALE) · By putting IRON ROD INSIDE INCREASE INDUCTANCE SOLENOID, CAN By ~ 200,000 × IRON ROD $= \mu N^{2}A = 2H! \left[\mu = 200,000 \times \mu_{0} \right]$ $\int R^{2} R^{2$

INDUCTORS COILS W/ SIGNIFICANT INDUCTANCE. CIRCUIT DIAGRAM SYMBOL : - Ill-"OPPOSES SUDDEN CHANGES IN CURRENT. RL CIRCUITS CONCEPTUALLY SIMILAR TO R.C. CIRCUITS. - R L SERIES CIRCUIT $V \stackrel{+}{=} R \underset{-}{[} R \underset{-}{[} I \underset{-}{[} I = 0.$ · WHAT HAPPENS AS TIME GOES ON (t>0)? T IN GENERAL: C t = 0• KCL: $\underline{T}_{R} = \underline{T}_{L} \equiv \underline{T}$ $\overline{\Box} = 0$ $K_{VL}: V = V_{R} + V_{L}$ $A V = IR + L \frac{\Delta I}{\Delta t}$ \vec{A} $V = IR + L \Delta I$ $= L \frac{\Delta I}{\Delta t}$ $\frac{\Delta I}{\Delta t} = V B$

As $t \longrightarrow \infty$ IN BETWEEN STEADY STATE AS CURRENT · NO CHANGING Builds up in Circuit: VOLTAGES / CURRENTS VR INCREASES (VR=IR) $\rightarrow \frac{\Delta T}{\Delta +} = 0$ VL DECREASES (KVL) $\cdot \bigotimes V = IR + L \bigtriangleup^{I}$ AI DECREASES $\left| I = \frac{V}{R} \right| C$ $D \left(V_{L} = L \frac{\Delta I}{\Delta t} \right)$ VR В Δt SLOPE I(t) ΔÏ 1 DECREASING $T(t) = \frac{V}{R} \left(1 - e^{-t/r} \right)$ T = L/Dtime

Application: FILTERING NOISE · Suppose WE WANT TO ELIMINATE NOISE FROM AN INPUT SIGNAL BEFORE SENDING IT TO AN OUTPUT: VIN(t) VIN(t) VOIT(t) · FROM INPUT (NOISY) Vout(t) · WE CAN ELIMINATE RAPIOLY VARYING Noise (MM), LEAVING ONLY THE SMOOTHLY VARYING SIGNAL (-) USING A "LOW-PASS" RL FILTER: $\begin{array}{c} & & & \\ &$ $\int_{\text{out}} \sqrt{t} = \sqrt{t} = \sqrt{t} = \sqrt{t} = \sqrt{t}$

