
302L s20 lecture 14 - batteries and resistance

1 Summary

• A battery is a device that exploits a chemical reaction to generate a potential difference
between its positive and negative terminals.

• Depletion of charge from the terminals of a battery induces further chemical reaction which
acts to restore the terminals to their equilibrium potential.

• If charge is drawn from the battery at a sufficiently slow rate, then the battery is able to
maintain its equilibrium potential at its terminals and the battery can be considered a source
of constant electric potential (voltage).

• Conceptually, a resistor is a piece of material that conducts electricity poorly. A resistor has
two ends where charge can enter or exit.

• A charge carrier in a resistor suffers frequent collisions with its environment. As a result,
a charge carrier in a resistor under the influence of a constant electric field ~E travels on

average with a drift velocity ~vd given by the product τ q ~E
m where τ is the average time between

collisions, q is the charge of the charge carrier, and m is the mass of the charge carrier.

• The current (denoted I) through a resistor is the ratio ∆Q
∆t of the amount of charge ∆Q

entering (or exiting) the resistor over a time interval of duration ∆t. Conceptually current is
a flow of electric charge.

• The SI unit of current is the ampere (or amp for short), denoted A, and 1 A = 1 C/s.

• To determine the sign of the current (i.e. positive or negative) through a resistor, we must
first pick one end of the resistor. If a net positive charge is entering this end, we say the
current is positive.

• Ohm’s law: The current I through a resistor is proportional to difference V in electric potential
between the two ends of the resistor. The proportionality constant, denoted R, is known as
the resistor’s resistance. In short:

V = IR

Conceptually, at a given voltage a resistor with a large resistance will conduct a weaker current
than one with a small resistance.

• The SI unit of resistance is the ohm, denoted Ω, and 1 Ω = 1 V/A
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• A resistor with a cross sectional area A and length l has a resistance R = ρ l
A . ρ is a

proportionality constant associated with the material composing the resistor. It has SI units
of Ω m and is known as the resistivity of the material.

• A material containing charge carriers of charge q and mass m with a mean time τ between
collisions has a resistivity ρ given by

ρ =
m

nq2τ

where n is the number of charge carriers per unit volume (i.e. the charge carrier density). Note
how the different microscopic properties of the material influence its macroscopic resistivity.

2 The Voltaic Cell (Battery)

In discussing the topic of electric current it will be helpful to have at our disposal a source of
constant voltage. So far we have discussed the capacitor, which has an electric potential difference
V between its two plates given by the ratio Q/C of the charge ±Q on its plates and its capacitance
C:

However, if we provide a conductive path between the two plates for some short period of time
by closing the switch:
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then some positive charge ∆Q travels from the positively charged plate to the negative plate1. Now
when we open the switch back up:

we find the charge on the positive plate is reduced by an amount ∆Q, and likewise the charge on
the negative plate is increased by ∆Q, so that the potential difference V ′ between the two plates
now is reduced by an amount ∆V = ∆Q/C.

In this sense we would say that a lone capacitor is not a source of constant voltage. What
we would like is the ability to conduct electric charge from one point to another without reducing
the potential between those points. This is accomplished by using a battery. In the following we
describe the first and possibly simplest battery: the voltaic cell.

To begin with we take a basin of water:

H2O

and add to it some concentrated sulphuric acid:

H2O

H2SO4

1As we have discussed, in metals it is actually the negatively charge electrons which conduct current, so really we
should consider a negative charge −∆Q leaving the negative plate and settling on the positive plate. Either way we
arrive at the same conclusion.
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In its concentrated form, sulphuric acid contains almost entirely intact H2SO4 molecules2. When
diluted with water, however, the H2SO4 will almost completely dissociate into hydrogen sulfate
(HSO4

– ) and a proton (H+), and from there about 5% of the HSO4
– molecules will themselves

dissociate into a sulfate ion (SO4
2– ) and proton:

H2O

H2SO4

HSO4
-

SO4
2-

H+

In other words, the reaction

H2SO4(aq) ←−→ SO4
2−

(aq) + 2 H(aq)
+ (1)

starts out badly unbalanced, since there initially no sulfate ions in the solution. As a result, the
sulphuric acid will dissociate until the reaction reaches equilibrium. This occurs when the rate at
which the sulphuric acid dissociates equals the rate at which a sulfate ion and two protons meet to
form sulphuric acid3

Once reaction (1) reaches equilibrium, we complicate the situation further by putting a plate of
zinc (Zn) and a plate of copper (Cu) into our basin:

H2O

H2SO4

HSO4
-

SO4
2-

H+

CuCu ZnZn

With the introduction of these materials, a number of additional reactions become possible. For
one, the zinc atoms in the plate can dissolve into our solution as Zn2+ ions.

Zn(s) ←−→ Zn2+
(aq) + 2 e−(Zn) (2)

2This is similar to pure water, where only a tiny fraction (10−7) of the H2O molecules are dissociated into H+

and OH– .
3For the sake of simplicity we ignore in the remainder of the discussion the intermediate hydrogen sulfate ion

HSO4
– .
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H2O

H2SO4

HSO4
-

SO4
2-

H+

CuCu ZnZn

e-

Zn2+

e-

When we first introduce the zinc plate, there are no dissolved zinc ions, so again the reaction
is out of equilibrium. Therefore we will expect, at least initially, some spontaneous dissolution of
zinc ions into solution. Crucially we note that the dissolution of a zinc ion leaves behind a couple
electrons in the zinc plate, so that as the zinc dissolves the plate acquires a negative charge.

With an appreciable concentration of dissolved zinc, we are now forced to consider the formation
of zinc sulfate:

Zn2+
(aq) + SO4

2−
(aq) ←−→ ZnSO4(aq) (3)

ZnSO4

H2O

H2SO4

HSO4
-

SO4
2-

H+

CuCu ZnZn

e-

Zn2+

e-

Since we begin with no zinc sulfate, the reaction will proceeds from left to right. The concen-
tration of sulfate ions therefore decreases as they consumed in the production of zinc sulfate. This
throws reaction (1), which was in equilibrium before the introduction of the plates, out of balance.
To restore balance, additional H2SO4 is consumed, which in turn increases the concentration of
H+. The excess H+ combines at the copper plate, forming H2 gas which bubbles out of solution:

2 H+
(aq) + 2 e−(Cu) ←−→ H2(g) (4)
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H+

H+

ZnSO4

H2O

H2SO4

HSO4
-

SO4
2-

H+

CuCu ZnZn

e-

Zn2+

e-

Cu+

Cu+

H2

Note that this reaction results in positive charge accumulating on the copper plate. Overall we could
say that the voltaic cell consumes sulphuric acid and zinc, producing zinc sulfate and hydrogen gas
and transferring two electrons from the copper plate to to the zinc plate:

H2SO4(aq) + Zn(s) + 2 e−(Cu) −−→ ZnSO4(aq) + H2(g) + 2 e−(Zn) (5)

H+

H+

ZnSO4

H2SO4

HSO4
-

SO4
2-

Cu

e-

Cu ZnZn

Zn2+

e-

e-
e-

Cu+

Cu+

Cu

Cu

ZnH2

For the sake of future reference we will call reaction (5) the “battery reaction”, to contrast it
with the “conduction reaction”, which we introduce later. When does this battery reaction
reach equilibrium?

Qualitatively we can see that as more zinc is dissolved by the sulphuric acid, the copper and
zinc plates become increasingly positively and negatively charged, respectively. This charge accu-
mulation will act to decelerate the reaction for two reasons. First, the negative charge on the zinc
plate will suppress the further dissolution of zinc, since the positive zinc ions will be attracted back
onto the zinc plate. Secondly, the positive charge on the copper plate will both repel the positively
charged protons and discourage the further removal of its (negatively charged) electrons. When the
electric potential between the two plates becomes sufficiently large, we would expect these electrical
forces to completely balance the chemical forces driving the zinc dissolution, and that the reaction
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would therefore come to a halt. The voltage at which this occurs is known as the emf (“ee em eff”)
of the battery, or its open circuit voltage, for reasons we shall soon see.

The emf of a battery depends of course on the materials composing it. For instance, the Zn/Cu
“Galvani cell” described here has an emf of 1.1 V, while your standard alkaline cell has an emf of
1.5 V. A 9 V battery is obtained by connecting six of these cells end-to-end (i.e. in series). A lithium
ion battery has a whopping 3.6 V cell, and, unlike the previous two examples, has the benefit of
being rechargeable.

Our original aim was to describe a device that produced a constant electric potential between
two points even as charge was being conducted between the points. Does the battery as we’ve
described it meet this criteria? To answer this we need to consider one further “reaction”: the
direct conduction of electrons between the two plates:

2 e−(Zn) ←−→ 2 e−(Cu) (6)

This is the “conduction reaction” mentioned earlier. The solution inside our basin can conduct
ions but not electrons, so as it stands this reaction is prohibited. We can activate this reaction by
joining the two plates with a conductor, i.e. by closing the switch in the diagram below:

H+

H+

ZnSO4

H2O

H2SO4

HSO4
-

SO4
2-

H+

CuCu ZnZn

e-

Zn2+

Cu+

e-

H2

Cu+

When we do this, in which direction does the conduction reaction proceed? From left →
right or right → left? Well, an electron in the zinc plate will experience both attraction to the
Cu+ ions in the copper plate and repulsion from the excess electrons in the zinc plate. Given the
opportunity then, electrons will spontaneously conduct from the zinc plate to the copper plate, i.e.
the conduction reaction proceeds from left to right:

H+

H+

ZnSO4

H2O

H2SO4

HSO4
-

SO4
2-

H+

CuCu Zn

Zn2+

Zn+

e-

H2

Zn+

n

e-
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This reaction reaches equilibrium when there is no longer any electrical force driving the reaction.
This occurs when electric potential on both plates very nearly the same, or, in other words, when
the charge built up on the plates by the battery reaction is completely undone and the plates are
returned to their original neutral state. What occurs when we now open the switch, deactivating
the conduction reaction?

The key observation is that we are now essentially where we started when we first introduced
the plates into the solution4. The discharging of the plates eliminates the electric forces, allowing
the dissolution of zinc and accompanying charging of the plates to proceed all over again5:

H+

H+

ZnSO4

H2SO4

HSO4
-

SO4
2-

Cu

e-

Cu ZnZn

Zn2+

e-

H2
e-
e-

Cu+

Cu+

Cu

Cu

Zn

We see then that, in contrast with the simple capacitor, the chemistry of the battery will act to
reestablish the full emf at the battery’s plates, even after being discharged.

It is however still not clear is whether our battery can maintain the its full emf at its plates
while the conduction reaction is activated, i.e. while charge is conducting between the plates.
Indeed when we connect a conductor between the plates we observed in class (and also reasoned
above) that the electric potential between the plates goes to zero. In this case any electron that
is transferred to the zinc plate from the copper plate by the battery reaction is immediately
conducted back to the copper plate by the conduction reaction. In chemistry terms we would
say that the battery reaction is the rate-limiting reaction.

If somehow we are able to arrange so that electrons can conduct between the plates but only
conduct slowly, then we can reverse this state of affairs so the conduction reaction is now the rate
limiting reaction. In this case then the discharging of the plates via conduction reaction takes
much longer than the charging of the plates via the battery reaction. In other words, any electron
transferred from the zinc plate to the copper plate via the conduction reaction is immediately
replenished by the charging accomplished by the battery reaction. The result in this situation

4To be fair, the battery consumed some sulphuric acid and dissolved some zinc in the process of charging the plates,
so the system is not exactly how it was when we started. A typical battery, however, will contain a sufficiently high
initial concentration of acid so that the battery can charge and discharge many (∼ 106 for a typical AA battery) times
before the acid’s concentration is significantly diminished. The key is that equilibrium in the battery is established
primarily by the change in the electrical potential difference between the plates, not by significant modification of
the reactant concentrations.

5In a more technical sense we can observe that with the discharging of the plates we have thrown the battery
reaction way out equilbrium, since we greatly increased and decreased respectively the concentrations of electrons
on the copper and zinc plates from their values when the battery reaction was in equilibrium and we had the full
emf of the battery between the two plates. Therefore, to reestablish equilbrium we require the battery reaction to
proceed again from left to right, as it did when we first introduced the plates.
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is that charge is permitted to conduct betwen the plates without the potential between them ever
deviating significantly from the full emf of the battery.

3 Resistors, Current, and Resistance

3.1 Drift speed vd

An object that facilitates this constriction of charge flow is called a resistor. It can be thought of as a
very poor conductor. How is it that a resistor obstructs the flow of charge? Perhaps unsurprisingly,
there are multiple factors that go into determining whether or not an object will be a good resistor,
and over the rest of the lecture we will touch upon all of the main ones.

However, there is one property common to all resistors which conceptually gives rise their
defining behavior. In any resistor, we find that the charge carriers are subjected to frequent collisions
with their surrounding environment. These collisions can be thought to originate from defects or
imperfections with the microscopic arrangement of the atoms in the material composing the resistor.
Here is a diagram illustrating a few examples of such defects:

The precise nature of these defects are not relevant to us, only the fact that in any real world
material these defects exist, and in materials that make good resistors these defects are abundant.
If such a material existed that was totally free from defects, and we were to apply an external field
in this material, its charge carriers would accelerate indefinitely since they would be at all times
experiencing a force F = qE, where E is the strength of the electric field and q is the charge of
the charge carrier. In a real world material, this acceleration could only occur for so long before a
charge carrier encounters a defect and scatters from, resulting in a randomization of its velocity:
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In the graph above we plot a one dimensional example of this, where we have segments of uniform
acceleration interrupted by “kinks” where the charge carrier’s velocity is reversed as a result of a
collision with a defect.

Let τ be the average time a charge carrier spends between collisions. On time scales short
compared to the τ the charge carrier experiences uniform acceleration, but on time scales somewhat
larger than τ its motion appears fairly random as a result of frequent collisions. How does its motion
appear to behave on time scales that are much larger than τ? Well, because of the constant force qE
being exerted at all times on the charge carrier we can say that, on average, the particle experiences
an increase vd ≡ aτ in velocity between collisions due to the constant accleration a = F

m = qE
m . We

might suspect then that its motion of very long times scales is a constant “drift” in the direction
parallel to the electric field:
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so that the charge carrier moves on average with a constant “drift velocity”:

vd =
qE

m
τ (7)

The fewer defects present in the resistor, the longer the time τ between collisions, and the larger
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the resulting drift velocity vd. We close the main discussion of drift velocity with a list of some
mean collision times τ for some different charge carriers in different materials.

charge carrier material mean collision time (fs=10−15 s) mean free path (Å = 10−10 m)
electron (e−) silicon 1000 1000
electron (e−) copper 30 30
sodium ion (Na+) liquid water 14 .06

We are able to grow silicon crystals of extremely high purity, so that electrons can travel for
relatively long distances (about 400 silicon atoms) before encountering an obstacle. Electrons in
copper do not get nearly as far (about 15 atoms) before colliding, and sodium ions in liquid water
will collide multiple times before getting past even a single water molecule.

Later we will find that copper, despite having a much shorter time τ , is a much better conductor
than pure silicon. This is because the number of charge carrying electrons per unit volume, i.e. the
number of electrons that are not bound to any nucleus, is much higher for copper than for pure
silicon.

3.1.1 Analogy: terminal velocity

This situation where a constant force gives rise to a constant average velocity occurs not only for
microscopic objects but for everyday objects as well. A person falling through the sky with their
parachute deployed certainly does not continue accelerating at a constant rate of 9.8 m s−2. In fact
a skydiver will reach a constant velocity, known as their terminal velocity, even before they deploy
their parachute6.

This occurs as a result of a enormous number of collisions occuring constantly between the
skydiver and the gas particles in the air. Because of the skydiver’s mass is vastly larger than an air
particle’s, each collision results in an extremely small randomization of the skydiver’s velocity, and
so a relatively long time is required for the skydiver to reach terminal velocity.

Charge carriers, on the other hand, are either have masses that are much lighter than the atoms
they collide with (when they are electrons), or have masses that are of the same order of magnitude
(when they are ions). As a result, charge carriers reach “terminal velocity” over the course of a
few collisions. Therefore, we can assume that, to a very good approximation, a charge carrier in an
electric field of strength E moves at all times with an average speed vd = qE

m τ .

3.2 Current

In the previous section we established that charge carriers in a resistor move on average with a
constant velocity that is proportional to whatever electric field E exists in the medium. A externally
applied electric field, then, will set induce a steady flow of charge in a resistor. This flow of charge
is called an electric current.

To give a quantitative definition of current, we must first be more specific about what we mean
by a resistor. Before we can consider some object to be a resistor, we must first specify its two
ends where charge/current can enter and exit. As an example we can take a block and pick at least
three different ways for current to enter and exit:

6A skydiver’s terminal velocity ends up being about 150mph. If there were no air to impede his/her fall, simple
energy conservation tell us they would reach a velocity of about 600mph before striking the ground.
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You will see from one of the homework problems that an object’s ability to restrict the flow of
charge (i.e. its resistance, which we will define more precisely later) will depend on which two ends
we choose to conduct current through.

Having selected the two ends, say these two:

we now pick one of these two, say the front (dark shaded) end, to be the positive (+) end:

(+)

(-)

and the other end, which we’ve picked to be the light shaded end, to be the negative (-) end.
Having made these selections, we can now define the current through the resistor. We can state

this in four equivalent ways:

The current, denoted I, is the rate at which:

(a) positive charge enters the positive end,

(b) positive charge exits the negative end,

(c) negative charge exits the positive end, or

(d) negative charge enters the negative end.

Current is evidently a charge divided by a time. Indeed, the SI unit of current, which is called
an ampere7 and denoted by the symbol A, and is defined so that 1 A = 1 C s−1.

To get a feel for what are large and small amounts of electric current, here is a list of some
currents:

7or amp for short
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• Current supplied by car battery to start a car in the winter: 300 A

• Current through glowing incandescent light bulb: 0.5 A

• Current supplied by watch battery (lasts about 3 years): 1 µA

• Current in a lightning bolt: 30 000 A

3.3 Resistance

So we have learned that resistors are two-ended objects that are composed of a material containing
of charge carriers that travel with some drift velocity vd = qE

m in response to an electric field.
Knowing this, can we determine a relationship between the voltage V applied across the two ends
of our resistor and the current I that is conducted through the resistor in response to this voltage?

We will work out this problem for the case of our rectangular resistor introduced in the previous
section, but the result we obtain (Ohm’s law) holds in general. To begin, let’s use the symbol A
for the area of the resistors end faces A and the symbol l for its length:

(+)

(-)

l
A

To determine the current, we ask ourselves, “In a time ∆t how much charge ∆Q exits the
negative end of the resistor?” Once we figure this out, we calculate the current I by taking the
ratio ∆Q/∆t.

To determine ∆Q we take the following steps:

1. The first thing we notice is that between the two ends of the resistor the electric field is
constant and given by E = V

l .

2. Therefore the charge carriers in the resistor are all moving with a velocity vd = qE
m τ .

3. In a time ∆t, these charge carriers will travel a distance ∆x = vd∆t.

4. From this we conclude that any charge carrier within a distance ∆x of the negative end of
the resistor will leave the resistor within the time interval ∆t:
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(+)

(-)

l
A

5. Therefore, the charge ∆Q exiting the negative end of the resistor is equal to the charge
contained in the light shaded volume in the diagram above. This is given by A∆xnq, which
is the product of:

• The volume A∆x of the region,

• the density (number per unit volume) n of charge carriers in the resistor, and

• the charge q of each charge carrier

Putting this all together we get:

I =
∆Q

∆t

=
A∆xnq

∆t

=
A∆tvdnq

∆t
=Anq(qEτ/m)

=
nq2τA

ml
V

(8)

We arrive at the most important result of the section:

The current I through a resistor is proportional to the voltage V across it.

Conventionally we express this relationship in the following form, which we call Ohm’s Law :

V = IR (9)

The constant R as you may have guessed already is the resistance of the resistor. From the above
equation we can see it is the ratio of a voltage and a current. Accordingly the SI unit of resistance
is 1 V A−1 which is known as given the symbol Ω, called an ohm.

3.4 Resistivity

From equations (8) and (9) we find that the macroscopic resistance R of a resistor is related to its
microscopic properties by the following equation

R =
m

nq2τ
· l
A

(10)
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The second factor has parameters that describe the geometry of the resistor. This factor tells us
that a long, narrow resistor has a higher resistance than a short, fat resistor. This is consistent
with our experience of water flowing through pipes, where for equal water pressures the short pipe
with a large diameter will conduct a higher flow of water than a long pipe with a small diameter.

The first factor, on the other hand, has parameters that all describe the material composing the
resistor. For convenience we often combine all the terms in the first factor into a single quantity
called the resistivity of the material:

ρ =
m

nq2τ
(11)

so that a resistor made of a material of resistivity ρ has a resistance R given by

R = ρ
l

A
(12)

From the above equation we see that resistivity has SI units of Ω m. Copper, for instance, has a
very small resistivity of 1.7× 10−6 Ω cm, while pure silicon has a much larger resistance, somewhere
in the ballpark of 100 Ω cm. The reason why copper is so conductive, i.e. why it has such a low
resistivity, is because every copper atom in the resistor contributes one electron as a charge carrier.
Contrast this with silicon, where all the electrons are quite strongly bound to a silicon nucleus,
with the result that, at room temperature, only about one in every 1012 silicon atoms contributes
a “conduction electron”.
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