
302L S20 Lecture 12 - Dielectrics

1 Summary

• Filling the space between the plates of a parallel plate capacitor with
an insulating material increases the capacitor’s capacitance by a factor
εr known as the insulator’s relative permittivity. An insulator that is
used for this purpose is known as a dielectric.

• The magnitude of a (non-polar) dielectric’s relative permittivity is de-
termined by the polarizability α of the atoms composing the dielectric.
A dielectric containing a high density of highly polarizable atoms will
have a large relative permittivity. Specifically we have the relation

εr = 1 +
nα

εo

where n is the number of atoms in the dielectric per unit volume1.

• The polarizability α of an atom is given by the ratio p
E where E is

the electric field at the atom’s location and p is the dipole moment
induced by the molecule by the electric field.

• The dipole moment p of an atom and measures the degree of charge
separation induced in the atom by some electric field. It is equal to
the product δq, where q is the charge of the atom’s nucleus and δ is
the displacement of the atom’s negatively charged electron cloud from
its positively charge nucleus.

• Conceptually we can think of a dielectric as “screening” the charge on
the capacitor plates it lies between, reducing the charge by a factor
1/εr.

2 Introduction

In the first lecture of the semester we introduced conductors and insulators
as a way of categorizing materials in terms of the mobility of their charge
carriers. Conductors you will recall are the materials where the charge
carriers move freely, while insulators contain charge carriers that are strongly
bound. In insulators charge carriers are only able to displace themselves
microscopically small distances in response to electric fields.

1Technically this relation only applies for relatively dilute materials but this complica-
tion does not concern us.
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Since the first lecture conductors have received considerable attention.
We learned for instance that conductors in equilibrium have no internal
electric field (and therefore a constant electric potential), and that pairs
of conductors can be used a capacitor to store charge. In this lecture we
let the insulators regain some of the limelight as we introduce the topic of
dielectrics.

3 Dielectrics

Consider again the arrangement of a parallel plate capacitor connected in
parallel with an electroscope:

We’ve used the Wimhurst machine to place some positive and negative
charge ±Q on each side of the combined parallel capacitor. The electroscope
and the parallel plate capacitor each respectively take a portion ±QE and
±QP of this charge ±Q in proportion to their capacitance, i.e.

QE
QP

=
CE
CP

(1)

Recall that the resting position of the electroscope needle is vertical when
the electroscope is uncharged. When the electroscope acquires charge, the
needle deflects horizontally to increase its separation from the vertical bar
since the two contain like charges2. The horizontal deflection of the needle
is thus a measure of the charge QE on the electroscope.

Now we insert a piece of plastic, which is an insulator, between the plates
of the electroscope. For illustration we’ve colored the plastic yellow in the
diagram below:

2Recall that the needle and the vertical bar are in conductive contact and together
comprise one conductor of the capacitor E.
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We find after inserting the plastic that the electroscope needle has re-
duced its horizontal deflection, indicating a loss in charge of the electroscope.
Note that we can remove the plastic and the electroscope returns to its orig-
inal horizontal deflection. This means that inserting the plastic did not
remove charge from the system but only caused a transfer of charge off the
electroscope and onto the parallel plate capacitor. This makes sense since
after all the plastic is an insulator and is not be able to conduct electricity
between the two plates of the capacitor.

Instapoll question:

What does this result imply about how the capacitance C ′
P of the parallel

plate capacitor with the plastic compares to the capacitance CP without the
plastic?

Answer:

In light of equation (1), a decrease in the ratio QE
QP

implies a decrease in

the ratio CE
CP

of the two capacitances. Since we did not modify the electro-
scope, CE could not have changed, so we can conclude that CP must have
increased, i.e. C ′

P > CP . When an insulator is used for this purpose of
increasing a capacitor’s capacitance, it is referred to as a dielectric.

If we were to repeat the experiment using capacitors with different the
plate areas A or plate separations d, we would find that filling the space
between the two plates with a given insulator increases the capacitance by
the same factor, which we denote by the symbol εr. In other words we have:

C =
εrεoA

d
(2)
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Further, we would expect this factor εr to depend on which insulating
material we use, since the empty space originally filling the space between
the plates is also certainly insulating. So we find then we can associate with
every insulating material its correponding factor εr which we call its relative
permittivity or, alternatively, its dielectric constant3. Here is a table of the
relative permittivities of some different materials:

Material C ′/C

air (1 atm) 1.0006
air (100 atm) 1.055
vacuum 1.0
teflon 2.1
alumina 10.0
liquid argon (Ar) 1.54
water (room temperature) 80

A couple observations:

• Some insulators can significantly modify capacitance. Alumina, for
instance, can increase the capcitor’s capacitance by a factor of 10.

• By looking at the relative permittivity of air at 1 atm and 100 atm, we
find that the increase in capacitance seems to scale with the density
of the insulator.

• Water, which is a liquid composed of polar molecules (H2O), has a
much higher dielectric constant than liquid argon, which is composed
of non-polar molecules (Ar).

For the remainder of the lecture we will show an application of the first obser-
vation and give an explanation of the second observation. In the homework
you will explore the third observation.

4 Aluminum Electrolytic Capacitor

As a practical application of dielectrics we can look at the aluminum elec-
trolytic capacitor. You might recognize these guys if you’ve ever looked
inside of a PC:

3Sometimes the symbol κ is also used in place of εr.
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Electrolytic capacitors are a cost- and space-effective way to store lots
of charge. Here is a very simplified diagram of what one looks like on the
inside:

Aluminum (Al)
+ + + + + + + + + + + + 

- - - - - - - - - - Alumina (Al2O3)

Electrolyte (H2O + ions)

Aluminum (Al)

+

-

A conducting electrolyte (think salty water) fills the space between two con-
ducting aluminum plates (foils actually). The surface of one of the aluminum
plates has been oxidized, i.e. reacted with oxygen to produce a layer of alu-
minum oxide, also known as alumina. While pure aluminum is a pretty good
conductor, alumina is an excellent insulator with a high relative permittivity.

Note that it is not the spacing between the aluminum foils which deter-
mines the plate spacing d, but rather it is the thickness of the oxide layer.
This is because the electrolytic solution is, as we mentioned, conducting.
Because the alumina dielectric layer can be made very thin (a few nanome-
ters), we find that, in light of the equation (2), these capacitors can be made
to have a very large capacitance.

For large capacitances we also want a large plate area A. Manufacturers
accomplish this by cutting the pairs of foil into long rectangles and rolling
them up and stuffing them into cylindrical cannisters:

To further increase the effective plate area A the foils are microscopically
“roughened” using electrochemistry. Here is an electron microscope image
of one of these roughened foils:
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The pits and protrusions making up this rather strange “Martian land-
scape” on the foil’s surface serve to increase the effective plate area and thus
increase its ability to store charge. In some cases the capacitance using the
roughened foil can be as much 200 times greater than the capacitance of a
microscopically flat foil!

As an aside: from the scale bar on the image we see the size of the
region shown is very small – only about 50 µm × 25 µm. This may be small
compared to everyday objects, but keep in mind that the thickness of the
alumina dielectric is 1000× smaller still!

5 Microscopic origin of the relative permittivity εr

5.1 Atomic polarizability

To understand how dielectrics are able to increase capacitance, we must look
at the material on a microscopic scale. The material is ultimately composed
of atoms, which can be thought of as a postively charged nucleus surrounded
by a cloud of negative charge formed by the atom’s electrons:

-
+ -

- -

-
- -

We show here the arrangement of charge in the atom in the absence of an
electric field. In this case the atom’s most stable arrange is with the negative
charge cloud centered perfectly around the positive nucleus. However, when
we apply an electric field:
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-
+

- -

-
- -

then the postively charged nucleus becomes pulled in the direction of the
field, while the electron cloud gets pulled in the opposite direction, with
the result that the two become displaced relative to one another by some
distance δ. To increase this separation δ we must increase the electric field
strength E, and to a very good approximation we can assume that the two
are proportional to one another:

δ ∼ E

The proportionality factor relating the two is different for different atoms.
For example, if a helium atom and a lithium atom are placed in the same
electric field, then the displacement δLi for the lithium atom is about a hun-
dred times larger than the displacement δHe of the helium atom! Is this
fact consistent with what you know about the chemical behavior of the two
elements?

Instead of defining some coefficient β for each atom so that δ = βE, we
will soon see that it is more convenient to define for each atom a coefficient
α known as the atom’s polarizibility so that

qδ = αE (3)

where q is the charge of the nucleus (+1 for hydrogen, +2 for helium, etc.).
The quantity qδ is known as the dipole moment of the atom and is denoted
by the symbol p, i.e.

p ≡ qδ (4)

The dipole moment as we’ve just defined it appears to be a measure of the
degree of charge separation or “polarization” of the atom. An atom with
a large polarizability α is therefore more “polarizable” in the sense that a
small electric field will induce in the atom a large polarization.

In figure ?? you can find a plot of the polarizabilities of the first 36
elements. What do you make of the “periodic” rapid increases followed by
slow decreases?
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5.2 Polarizability and permittivity

What is the connection between a dielectric’s relative permittivity εr and
the polarizability α of the atoms making up the dielectric? To answer this
question, we start by:

• take a dielectric consisting of n atoms per unit volume, with each atom
possessing a nuclear charge q and a polarizability α, and

• place it between the plates of a parallel plate capacitor with plate area
A and separation d:

Next we place some charge ±Q on the plates of the capacitor. If we can
determine the resulting voltage V across this dielectric filled capacitor, then
we can take the ratio Q

V to determine its capacitance.
The first thing we note is that depositing the charge on the capacitor

plates will create an electric field E inside of the dielectric. The atoms in
the dielectric respond to this electric field by polarizing, i.e. by displacing
their clouds of negatively charged electrons with respect to their positively
charge nuclei by some amount δ.

To see the macroscopic effect of this microscopic displacement δ, we want
to first conceptually split the dielectric (purple) into its negative charges
(blue) and positive charges (red):

The macroscopic effect of the microscopic displacement created by the elec-
tric field is to shift all the negative charge clouds a distance δ with respect
to their associated positive nuclei:
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The red and blue volumes mostly overlap, but at the end of the dielectric
close to the positively charged plate we have exposed some negative charge,
and vice versa. How large is this exposed charge Qexp in the region near the
positively charged plate? Well:

• The volume of the exposed region is given by the plate area A times
the displacement δ.

• Since the dielectric contains n atoms per unit volume, this means the
exposed volume contains nδA clouds of negative charge.

• Since the charge of the nucleus of each atom is q, and the atoms are
presumed to be electrically neutral, this means each cloud of negative
charge has a charge −q.

• Therefore, the charge Qexp is given by the equation:

Qexp = −qδnA

So we find the effect of the electric field is to create some exposed charge
±Qeff on the ends of the dieletric that are opposite in sign to the charge on
the nearby plate. We can then think of the dielectric as acting to partially
“screen” the charge on the capacitor plates, so that we effectively now have
a charge Qeff = Q + Qexp < Q on the positive plate of the capacitor,
and a charge −Qeff likewise on the negative plate. This screening effect of
dielectrics is their essential conceptual significance4.

We can summarize the arguments above by stating that our dielectric-
filled parallel plate capacitor holding a charge Q is equivalent to a vacuum-
filled parallel plate capacitor holding a charge Qeff . Therefore, the voltage
V across the dielectric-filled capacitor is simply the effective charge Qeff
on the plates divided by the capacitance Co = εoA

d of the same capacitor
without the dielectric:

V =
Qeff
Co

=
Qeff
εoA/d

=
Q+Qexp
εoA/d

(5)

4In class a student asked what a conductor would do, and we saw that it would com-
pletely screen the charge on the capacitor plates, i.e. Qeff = −Q for a conductor. We
might say then that the polarizability α of the metal atoms in a conductor is infinite. In
other words a negative charge cloud can move arbitrarily far from its associated nucleus
in response to an electric field, i.e. the charge carriers move freely.
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From here we note that our expression for Qexp contains the product qδ.
This product we recognize as the atom’s dipole moment p, which in turn we
recall is given by αE = αV/d. Making these substitutions we find

Qexp = −αV nA/d

Substituting the above equation into equation (5) we arrive at:

V =
Q− αV nA/d

εoA/d

Finally, this equation can be rearranged to obtain:

Q

V
=

(
1 + nα

εo

)
εoA

d

The ratio on the left is ratio of the charge Q placed on the dielectric-filled
capacitor to the voltage V across it. This ratio is then the capacitance C
of the dielectric filled capacitor. By comparison with equation (2), we find
that the relative permeability εr of the dielectric filling the capacitor is given
by

εr = 1 + αn/εo (6)

This equation is the connection between the macroscopic relative permit-
tivity εr of a dielectric and the microscopic polarizability α of the atoms
making up the dielectic. Qualitatively, the equation tells us that, by in-
serting a material containing atoms of a high polarizability α between the
plates of a capacitor, we can greatly increase its capacitance. We can further
amplify this effect by increasing the density n of atoms in the material.
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