
302L S20 Lecture 11 - Capacitor energy

Summary:

• The energy E on a capacitor with capacitance C at a voltage V (and
thus holding a charge Q = CV ) is given by
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***

In this lecture we look at how capacitors can store energy. For example,
to shock a malfunctioning heart back into action doctors use a defibrillator.
A defibrillator is essentially a voltage source attached to a relatively large
capacitor:

Conducting wires connect the two ends of the capacitor to a pair of pad-
dles, which are also conductive. Normally the paddles are separated by air,
which is insulated, so the capacitor remains charged up at the voltage of the
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source (roughly 1kV). However, your body, which is a sack of salty water, is
conductive, so when the paddles are placed on the left and right sides of a
patient’s chest, the capacitor becomes “short-circuited”, and all the energy
stored in the capacitor becomes deposited in the patient’s heart. Though
it is not fully understood why, this sudden transfer of electrical energy into
the heart can restore an improperly beating heart back into normal healthy
operation.

Intuitively we have the impression that in order to get enough energy to
defibrillate a heart, we need:

• a lot of charge Q,

• stored at a high potential V .

We will see that indeed the energy stored on a capacitor is proportional to
the product QV of these quantities.

To start with, we make more precise the question of “how much energy
is stored on a capacitor?”. A more well-formulated question might instead
be, “how much work W does it take to charge up a capacitor?”. We will
take this necessary work W to be what we mean by the energy E stored on
a capacitor.

The procedure for determining the W is simple. We are going to first
figure out the work ∆Wn required takes to transfer a single electron from the
positive plate of a capacitor to its negative plate when there are n electrons
on the negative plate:

The total work W in transferring N electrons from the positive plate to
the negative plate is then simply the sum ∆W1 + ∆W2 + · · ·+ ∆WN of the
work needed to transfer each electron, one by one:
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To calculate ∆Wn, we first note that the work required1 to move a parti-
cle from a point A to a point B is equal to the difference UB −UA ≡ ∆U in
the particle’s final and initial potential energies. The change in the potential
energy of a charged particle however is the product q (VB − VA) particle’s
charge q and the difference ∆V = VB − VA in the electric potential between
the start and end points. Therefore, the work ∆W(+)→(−) required to take
an electron from the positive (+) plate of a capacitor to the negative (-)
plate is:

∆W(+)→(−) = (−e) (V− − V+) = e (V+ − V−)

But if a capacitor with capacitance C has a potential difference V+ − V−
between its positive and negative plates, then we know the capacitor is
holding a charge Q = C (V+ − V−) on its positive plate. Substituting this
in we get

∆W(+)→(−) =
eQ

C

Next we note that if we have n electrons on the negative plate, then the
charge −Q on the negative plate is just −ne: the number of electrons n
times the charge −e of an electron. Therefore, the work ∆Wn required to
move an electron from the positive to negative plate, when there are already
n electrons on the negative plate, is

∆Wn =
e(−ne)
C

=
e2

C
n

So we find that it takes more work to transfer an electron to the negative
plate when there are already a lot of other electrons there. This should not
be too surprising since the repulsion away from the negative plate and at-
traction back towards to the positive plate both get stronger with increasing
n.

We’re almost done! To determine the energy E on a capacitor with N
electrons on the negative plate, we sum up the little works ∆W1 + ∆W2 +

1Note this is the opposite of the work done on the particle. This is simply energy
conservation – the energy given to the particle must have come from somewhere.
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· · ·+ ∆WN required to transfer each electron, i.e.

E =∆W1 + ∆W2 + · · ·+ ∆WN (1)
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Here is a detailed explanation of the tricky steps:

• (!): In homework 3 you learned that the sum of all the positive whole

numbers from 1 to N is N(N+1)
2 .

• (∗): Since the charge −e of an electron is so small, any realistic situa-
tion will involve so many electrons N that N and N −1 are essentially
equal.

• (∼): If we have N electrons on the negative plate, then the charge Q
on the positive plate is Ne.

To see this another way, we can represent each ∆Wn by a rectangle of
width 1 and height Wn and arrange them in increasing order like so:

The total work (and thus the capacitor energy) should be the area of all
the rectangles, but with the way we’ve arranged them we can see that our
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array closely approximates a triangle of base N and height ∆WN = e2

CN .
From the formula for the area of a triangle (12base × height) we reproduce
the formula for the capacitor energy.

So our work here is essentially done. If we want to know the energy E
of a capacitor with a capacitance C holding a charge ±Q, we simply plug
the values into equation (1).

However, equation (1) is often not very convenient. Typically we are
given the voltage V across a capacitor, and do not initially know the charge
Q. This is because sources of constant voltage (batteries, wall outlets, cell
phone chargers, etc.) are quite common, but source of constant charge are
pretty rare.

It would be nice then to have an expression for the capacitor energy in
terms of its voltage V (and capacitance C). Well we know that C = Q

V , or
in other words Q = CV , so plugging this into equation (1) we get:

E =
1

2

(CV )2

C
=

1

2
CV 2 (8)

At the beginning of the lecture I claimed that the capacitor energy was
proportional to the product of the charge Q and the potential V . To see
this we make a single substitution CV → Q into the previous equation:

E =
1

2
(CV )V =

1

2
QV (9)

Any of equations (1), (8), or (9) can be used to calculate the capacitor
energy2. Use whichever one is most convenient for the problem at hand.
Example: Flashlamp + Laser

One scenario where we need to store a lot of electrical energy is in the
generation of pulsed lasers. In my lab on the bottom floor of the physics
building we have a pulsed laser that produces about 1 Joule of laser light
that is only 5ns = 5 · 10−9s in duration. To initiate the generation of a laser
pulse, a 100µF capacitor which has been charged up to 1kV is discharged
through a “flash lamp” which is wrapped around a crystal3. The crystal
absorbs energy from the flash lamp and reradiates it as laser light. See the
picture below for an illustration:

2The relation E = 1
2
QV might look odd since we know that for a particle of charge q

in a potential V we have U = qV . Why then do we have a factor of 1
2

here? The answer
is that in the relation U = qV we assume that the electric potential was constant as our
particle moved between two points. In calculating the energy of a capacitor, however, we
needed to take into account the fact that the potential was increasing every time we move
an electron between the positive and negative plates. We do not expect then for the two
expressions to agree, since they correspond to different physical situations.

3The flash lamp is basically a neon (actually xenon) sign that is only on for a few
microseconds. Special capacitors are needed in order to get a discharge this rapid.
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We could ask about the efficiency of this arrangement: what percentage
of the energy that we put into the flash lamps comes out of the crystal as
laser light?

The energy EC stored in the capacitor is given by

EC =
1

2
CV 2

=
1

2
(100µF) (1kV)2

=
1

2
100× 10−6F×

(
103kV

)2
=

1

2
100× 10−6F× 106V2

=
100

2
J = 50J

The efficiency is then the ratio of the laser pulse energy EL = 1J and
the capacitor energy:

efficiency =
EL

EC
=

1J

50J
= 2%

Not a terrible conversion efficiency (definitely don’t want to get hit in the
eye with 1J of laser energy).

These pulsed laser incidentally find application in the field of derma-
tology, where they are used to remove wrinkles and tatoos, and also treat
pigmentary conditions. See this example4 of the laser treatment of a “Cafe
au lait macule”, i.e. a birthmark:

4Levin et. al, Lasers in Surgery and Medicine 48:181–187 (2016)
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Figure (A) shows the birthmark before laser treatment, and figure (B)
shows the improvement after a single laser treatment.

Instapoll Question: A defibrillator is made from a 1kV battery and a
600µF capacitor. Approximately how much energy is needed to restore a
fibrillating heart to normal operation?

Answer:

1

2
CV 2 =

1

2
× 600× 10−6F× 106V2 =

600

2
J = 300J

For comparison, that is roughly twice the energy of the fastest baseball every
thrown.

Instapoll Question: A capacitor that is connected to some voltage source
contains an energy E. The capacitor is then removed from the voltage
source and then wired in parallel with an identical capacitor. The parallel
combination is then connected to the same voltage source. What is the total
energy contained in the two capacitors?

Answer:

Here V is fixed but the effective capacitance of the parallel combination
is double the capacitance of our original capacitor (capacitances in parallel
add together). Therefore:

E′ =
1

2
(2C)V 2 = 2

(
1

2
CV 2

)
= 2E

This makes sense since we do not expect to get any more energy wiring two
capacitors to the same battery than by wiring each capacitor to its own
separate battery (of equal potential). You don’t get something for nothing
:)
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