
302L S20 Lecture 10 - Capacitors in parallel and in

series

1 Summary

• Capacitors in parallel:

– By combining two capacitors with capacitances CA and CB in
parallel we obtain a new capacitor with capacitance CA + CB

– The charges QA and QB on capacitors CA and CB joined in
parallel are proportional to their capacitances; i.e. QA/QB =
CA/CB.

• Capacitors in series:

– By combining two capacitors with capacitances CA and CB in

series we obtain a new capacitor with capacitance
(

1
CA

+ 1
CB

)−1

– The charges QA and QB on capacitors CA and CB joined in series
are the same and equal to the total charge Q across the series
combination.

2 Capacitors in parallel

Consider two capacitors, shown below

Capacitor A is composed of two conductors A1 and A2 and has a capaci-
tance CA, and likewise for capacitor B. Recall that when we say a capacitor
A, i.e. a conductor pair, has some capacitance CA, we mean that:

• if we were to place a charge +QA on one of the conductors (A1) and
an opposite charge −QA on the other (A2),

• the charge will rearrange itself until
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– the electric potential at conductor A1 is a constant VA1 and

– the electric potential at conductor A2 is a constant VA2 , and

• the potential difference VA1−VA2 between the two conductors is given
by

VA1 − VA2 =
QA
CA

The graphic below illustrates this:

The light shaded regions are meant to illustrate roughly how the surface
charge distributes itself to achieve a constant potential at each conductor1.
Keep in mind that in the above we are assuming the two conductors are in
isolation – i.e. that there are no other charges or conductors around.

Now suppose we join together conductors A1 and B1 with a long fine
conducting wire W1, and likewise for A2 and B2:

What we end up with is a pair of conductors D1 and D2 where:

• D1: A1, B1, and W1

• D2: A2, B2, and W2

1Keep in mind though that in reality all the charge on a conductor lies on its surface
and never inside the conductor.
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So we find we have taken a pair of capacitors and made another capacitor
which we can call D. What is the capacitance CD of this our new capacitor?

To determine this, we place some charge +QD on D1 and −QD on D2:

and then figure out how this charge distributes itself in order to keep each
conductor at a constant potential.

Once the charge equilibriates, we do not expect the wires (W1 and W2)
to contain much charge, for two reasons:

• The wires are fine and so putting significant charge on them would
result in large mutual repulsion.

• The two wires are far apart from one another. Any positive charge
on W1 and negative charge on W2 could reduce their separation by
moving to one of the capacitors A or B.

So to a good approximation we can say the charge ±QD splits up into
±QA and ±QB (i.e. QD = QA +QB) and collects on the two capacitors A
and B:
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How does the charge divide up? Well in equilibrium conductors A1 and
B1 are the same potential, i.e

VA1 = VB1

because they are joined together by the conducting wire W1, and likewise
for A2 and B2, i.e.

VA2 = VB2

Therefore the difference VA1 − VA2 ≡ ∆VA must equal the difference VB1 −
VB2 ≡ ∆VB, which are both equal to the potential difference ∆VD across
our new capacitor D, i.e.

∆VA = ∆VB ≡ ∆VD (1)

We can illustrate this like so:
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Since we have separated the capacitors by some large distance, we can
also assume that, to a good approximation, the capacitance CA of capacitor
A is unaffected by the presence of capacitor B, so that:

QA = CA∆VA = CA∆VD (2)

and likewise
QB = CB∆VB = CA∆VD (3)

2.1 Aside – adjustable capacitor demo

Pausing for a moment in our calculation of the capacitance CD of our new
capacitor, we can rearrange the above equations (2) and (3) to obtain

QA
QB

=
CA
CB

we find then the very sensible result that when we connect two capacitors in
parallel and charge them, the charge will prefer to flow onto the capacitor
with the larger capacitance2.

Figure 1: Illustration of adjustable capacitor demo.

To demonstrate this principle, we have connected in parallel two two
capacitors. See figure 1 for reference. The two capacitors are:

1. A parallel plate capacitor, which we will refer to as P , with an ad-
justable separation.

2. An electroscope, which you might remember from the first couple lec-
tures. The electroscope consists of two conductors, held together by
insulating material. The two conductors are:

• a metal ring (purple), which surrounds

2See the end of section 4 in the previous lectures notes for a discussion of this connection
between capacitance and “charge affinity” in the context of the parallel plate capacitor.
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• a vertical bar with a slot for a thin needle to swivel about (green).

When the electroscope becomes charged, the needle tilts away from its
normal vertical orientation so that the charges it carries can maximize
their separation from the like charges held by vertical bar. Therefore
the extent of the needle’s tilt gives a measure of the charge on the
electroscope.

Let’s begin with a large spacing between the plates of our parallel plate
capacitor. According to the formula for the capacitance of a parallel plate
capacitor derived in the previous lecture:

C =
εoA

d

a large d implies a smaller capacitance than a larger d.
Using the Wimhurst machine we can charge up our capacitor pair with a

charge ±Q large enough to observe deflection of the electroscope needle. We
then disconnect the Wimhurst machine from our capacitor pair, so that the
pair is left with some fixed charge. Since charge is conserved, this charge is
stuck on the capacitor pair forever (or until the humid Austin air provides a
path for the opposite charges ±Q to recombine – whichever happens first).

Instapoll question:

If we reduce the separation between the plates on the parallel plate
capacitor, what will happen to the electroscope needle?

1. Deflects vertically

2. Deflects horizontally

3. Nothing

Answer:

As we decrease the plate separation, the capacitance CP increases. Since
charge prefers to large capactance, the charge will flow from electroscope,
whose capacitance CE is fixed throughout, onto the parallel plate capacitor.
The reduction in charge on the electroscope can be observed by a deflection
of the electroscope towards its uncharged state, i.e. in the vertical direction.

2.2 Parallel capacitance derivation resumed

To finish our calculation for the capacitance CD, we add together the above
expressions for QA and QB (equations (2) and (3)), obtaining

QD = QA +QB = CA∆VD + CB∆VD = (CA + CB) ∆VD

dividing both sides by ∆VD we find

QD
∆VD

= CA + CB
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We find then that by connecting two capacitors in parallel we obtain a
new capacitor with a capacitance equal to the sum of the capacitances of
the original capacitors. This is illustrated schematically by the following
diagram:

Figure 2: Wimhurst machine with Leiden jars.

By observing the sparks generated from the Wimhurst machine we see
a simple example of parallel capacitors in action. A diagram of the set up
is shown in figure 2. The Wimhurst machine transfers equal and opposite
charge onto the left and right metal spheres, shown in green and purple on
the diagram. Charge builds up on the spheres until the potential difference
reaches some threshold voltage beyond which the air between them becomes
conductive and the spheres discharge with a visible and audible spark. The
brightness and loudness of the spark is determined by the size of the dis-
charge. Because the capacitance of the pair of spheres is quite small, it does
not take very much charge to reach this threshold voltage and therefore the
spark is dim and quiet.

By connecting two “Leiden jars”, shown in red and blue, in parallel with
the spheres we add onto the small capacitance of the spheres the much larger
capacitance of the Leiden jar pair. The result is that the sparks are now
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much brighter and louder. Also note how the sparks are spaced out by
longer intervals, indicating that more time is required to charge this parallel
capacitance up to the threshold voltage.

3 Capacitors in series

Now let’s take our capacitors A and B again:

and this time only connect A2 and B1 with a long fine wire W , leaving
A1 and B2 disconnected:

Connecting the capacitors in this way is known as connecting them in
series. However, we now have three conductors, so, as it stands, it is not yet
clear in what sense we have combined capacitors A and B to form another
capacitor D with some capacitance CD. What we will find is that, by placing
a charge +Q and opposite charge −Q on the unconnected conductors A1

and B2:

we generate a voltage VA1 −VB2 across the two conductors which is propor-
tional to Q, so that the ratio Q

VA1
−VB2

≡ CD is constant, i.e. independent of

Q. Therefore, if we rename A1 → D1 and B2 → D2, we obtain a capacitor
D with a capacitance CD which we call the series capacitance of capacitors
A and B

So it remains to show you what I claimed: that this ratio Q
VA1

−VB2
which

we are calling CD is indeed constant. The key is to see that when we first
place the charges ±Q on A1 and B2, we generate an electric field ~E along
the trio Do of connected conductors A2, W , and B1:
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This arrangement is not stable ( ~E must be zero everywhere inside a
conductor at equilibrium). Positive charge carriers in the conductor move
with the electric field and negative charge carriers move oppositely until
the electric potential is constant everywhere along Do. This charge transfer
occurs until we get −Q on A2 and +Q on B1:

Let’s pause again to contrast the parallel and series combinations. In
the parallel case we argued that the ±Q placed on the parallel combination
distributed itself among the two capacitors A and B so that QA

QB
= CA

CB
.

In the series case we have arrived at a very different conclusion. Here we
find that putting ±Q on the unconnected conductors D1 and D2 resulted in
a spontaneous polarization (charge separation) of the connected conductors
Do so that the charges QA and QB on capacitors are both equal to the full
charge Q that we placed on our series capacitor. This conclusion holds for
any value of the capacitances CA and CB.

With this in mind, let’s repeat the experiment with the adjustable par-
allel plate capacitor and electroscope, this time connecting the two in series:

Instapoll question:

What will happen to the electroscope needle this time when we reduce
the plate separation on the parallel plate capacitor?
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Answer:

Since the charge on the unconnected conductors (purple and red) stays
fixed at ±Q (it has nowhere else to go!), we find that the charge across the
electroscope must also stay fixed at ±Q, no matter what changes we make
to the parallel plate capacitor. Since the needle deflection is a measure of
the charge on the electroscope, we conclude that we expect no change in the
needle deflection.

***

Continuing our derivation for the series capacitance, we note that, as
things now stand, all the conductors are at equilibrium. Therefore, the
potential at A2 is the same as the potential at B1, since they are part of the
same conductor. We can then write the voltage difference VD1−VD2 ≡ ∆VD
across our series capacitor in the following way:

∆VD =VD1 − VD2

=VA1 − VB2

=VA1 − (VA2 − VB1)− VB2

= (VA1 − VA2) + (VB1 − VB2)

≡∆VA + ∆VB

In the figure below we illustrate this graphically:

But if our capacitors A and B are far enough away from each other that
they do not influence each others’ capacitance, then we can also say

∆VA =
Q

CA

and likewise

∆VB =
Q

CB
so that

∆VD = ∆VA + ∆VB = Q

(
1

CA
+

1

CB

)
After some rearranging we find

CD =
Q

∆VD
=

(
1

CA
+

1

CB

)−1
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So that our ratio CD is, as claimed, independent of Q. In the end we find
that taking two capacitors and connecting them in series we obtain a new
capacitor with a capacitance given by the reciprocal of the sum of their
reciprocals. That is quite a mouthful so lets state the answer schematically
as we did for the parallel combination:

The series capacitance definintely has a trickier formula than the parallel
capacitance, so let’s do some examples to get a feel for things.

Example:

What is the series capacitance of two capacitors with the same capaci-
tance C?

Answer: Plugging in CA = C = CB into the expression for series capacitance

we get (
1

C
+

1

C

)−1

=

(
2

C

)−1

=
C

2

so that putting two identical capacitors in series results in a series capaci-
tance with half the capacitance of the original capacitors.

Example:

What is the series capacitance of two parallel plate capacitors with equal
plate area A and plate separations d1 and d2?

Answer:

From the formula C = εoA
d for the parallel plate capacitance and the

formula for the series capacitance we get:(
d1
εoA

+
d2
εoA

)−1

=

(
d1 + d2
εoA

)−1

=
εoA

d1 + d2

so that we effectively end up with another parallel plate capacitor with a
separation equal to the sum of the individual separations.
Instapoll question:

What is the approximate series capacitance of two capacitors A and B
with capacitances CA and CB, where CA � CB?

Answer:
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If CA � CB, then 1
CA
� 1

CB
. Therefore 1

CA
+ 1

CB
≈ 1

CB
. If we take our

formula for the series capacitance:

CD =

(
1

CA
+

1

CB

)−1

and plug in our approximation we get

CD ≈
(

1

CB

)−1

= CB

This means that if we can take a small capacitance and put in series with
it a large capacitance and end up with essentially what we started with.
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