
302L S20 Lecture 9 - Capacitors

1 Summary

• In equilibrium, the electric potential is the same everywhere on a con-
ductor.

• A capacitor is a pair of conductors.

• The capacitance C of a conductor is the ratio Q/V where V is the
potential difference between the conductors when there is a charge Q
on one conductor and an opposite charge −Q on the other.

• In SI units capacitance is given in Coulombs per Volt, i.e. C/V. A
capacitance of 1 C/V is known as a Farad, abbreviated F.

• The capacitance of a parallel plate capacitor is εoA
d , where A is the

area of the plates and d is the distance between them.

• Capacitors are used to store charge.

2 Electric potential at conductors

From lecture 6 we learned about the electric field inside of and at the surface
of conductors. We found that, in equilibrium, the electric field and the
charge density inside a conductor is always zero. Any charge resides entirely
on the surface and any electric field at the surface points in the direction
perpendicular to the surface.

What can we say then about the electric potential V (~x) at a conductor?
The rule turns out to be very simple: in equilibrium, the electric potential is
the same everywhere on the conductor – even the surface. To see this let’s
refer to diagram 1.

Equation (2) from lecture 8 says that the potential difference V2 − V1
between two points ~x1, ~x2 in a constant electric field ~Eo is given by:

V2 − V1 = − ~Eo · (~x2 − ~x1)

Well, an electric field of zero1 is certainly constant, so applying the above
equation we find that the electric potential between any two points (e.g.
A→ B, A→ C in the figure) on or in the conductor is zero!
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Figure 1: The electric potential is the same for any point on or in a conduc-
tor.

Figure 2: A capacitor is formed by a pair of conductors.

3 Capacitors

Let’s take two conductors, A and B, and place some charge +Q on A and
some opposite charge −Q on B (see figure 2). The combination of:

• the mutual repulsion between the charge carriers within each conduc-
tor, and

• the attraction of the charge on A to the opposite charge on B

will result in a distribution of the charge on the surface of each conductor
so that the electric potential is a constant value VA everywhere on A and a
constant value VB on B, as is required of conductors.

Now if we add another +Q of charge to A and another −Q to B, then
this added charge will distribute itself in exactly the same way as the original
charge. By the superposition principle then we find that doubling the charge
on each conductor simply doubles potential difference VA − VB between the
two conductors.

In other words, the ratio Q
VA−VB is fixed for a given pair of conductors.

This ratio is termed the capacitance C of the conductor pair, i.e.

C =
Q

VA − VB
1i.e. ~Eo = 0̂ı + 0̂ + 0k̂
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Figure 3: Symbol for a capacitor

This is more commonly expressed using the shorthand

C =
Q

V
(1)

where V is understood to be the increase in electric potential going from
the conductor with charge −Q to the conductor with charge +Q.

The conductor pair itself is termed a capacitor. In electrical circuit dia-
grams (i.e. “schematics”), capacitors are represented by the symbol shown
in figure 3. Each black “T” is meant to represent one of the conductors in
the conductor pair.

From the above equation we see that capacitance is a charge divided by
a voltage. The SI units for capacitance is therefore in Coulombs per Volt, or
C/V. This quantity of 1 C/V is known as a Farad (abbreviated F), named
after the physicist Michael Faraday.

Dessert platter of capacitances:

• human body + the floor:

150pF = 150 · 10−12F

• inside + outside human cell membrane:

1nF = 1 · 10−9F

• subwoofer power supply capacitor:

3 F

• two electrodes on a computer microprocessor transistor:

3fF = 3 · 10−15 F!

4 Parallel plate capacitor

To determine the capacitance of a conductor pair A and B, it appears we
need to:

1. put some charge +Q on A and some opposite charge −Q on B, then

2. figure out how the charge needs to distribute itself so that the electric
potential is a constant VA on A and a constant VB on B, then

3. take the ratio Q
VA−VB to get C

This is in general a hard problem, but we can figure it the solution for some
simple cases.
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Figure 4: Parallel plate capacitor

We will work out the example of the parallel plate capacitor, which con-
sists of two identical plates of area A separated by a distance d. See figure
4 for an illustration.

In the figure we have a perspective view looking between the two plates.
The left and right plates have a charge +Q and −Q respectively. If the
separation d between the plates is small compared to the dimension of the
plates (e.g. their radius if they’re circular or their side length if they’re
square), then I claim that the charge +Q on left plate will distribute itself
evenly over the face that faces the right plate, and likewise for the charge
−Q on the right plate. This assumption is reasonable because

• the postive charge and the left plate is drawn towards the negative
charge on the right (and vice versa), and

• the like charges on a given plate will repel one another, spreading out
to maximize their separation.

For points near the centers of the plates the electric potential can be
approximated by the potential generated by two infinite sheets of surface
charge density σ± = ±Q

A separated by a distance d. The electric potential
V+(x) generated by the left plate at these points is, by formula (5) in lecture
8:

V+(x) = −σ+
2εo

x = −Q/A
2εo

x
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where x is your distance from the plate. This potential is plotted in red
on the graph below the plates in the figure. The electic potential V−(x)
(plotted in blue) due to the right plate looks similar to V + (x) except it is
shifted to the right by a distance d and flipped upside down since the plate
is oppositely charged.

By the superposition principle, the electric potential generated by both
plates is the sum of the electric potentials generated by each plate separately.
This sum is shown as the solid green line in the plot. We find that:

• Inside the plates, the slopes of the left and right potentials cancel,
resulting in a constant potential. Thus we find we have distributed our
charge on the plates so that we have satisfied the requirement given
in step 2 of the procedure outlined in the beginning of the section.

• In between the two plates, the slopes for the left and right plates are
equal so that the slope of their sum is double the slope of either.

• The electric potential difference V (0) − V (d) ≡ ∆V between the two

plates is thus given by the slope Q/A
εo

times the distance d between the
plates, i.e.

∆V =
Q/A

εo
d

We find then, after some algebra, that the capactance C of a parallel plate
capacitor is given by the simple formula

C =
Q

∆V
=
εoA

d
(2)

Instapoll question:

A parallel plate capacitor with circular plates has a capacitance C. If
we double the radius of the plates, what is the new capacitance?

5 Water flow analogy

So far we have said what a capacitor is, defined its capacitance, and solved
for the capacitance of a parallel plate capacitor. But what are capacitors
good for? When do we use them?

Capacitors are used mainly for charge storage. An analogy at this point
may be helpful. Refer to figure 5.

Suppose you are trying to clean an especially dirty pot that your room-
mate has left in the sink for a couple weeks. To blast away the crud you need
a high pressure stream of water from the faucet. The source of water feeding
your faucet comes from the town’s water tower. The town employs someone
to keep the tower water filled up to some minimum height or, equivalently,
to some minimum pressure. The water pressure at the tower is thus plenty
enough to clean the pot, but, by the time the water has travelled down
the long narrow pipe connecting the tower to your house, the pressure is
significantly reduced so that all you get is a piddling drip.
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Figure 5: Water pressure is reduced after traveling a long narrow pipe.
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Figure 6: By adding a reservoir you can store large quantities of water at
the full water tower pressure.

To solve this problem we add a water reservoir near the faucet. When
the faucet is off, the water tower begins filling up the reservoir. There is
still the long narrow pipe connecting the two so the reservoir will fill rather
slowly, but if we wait long enough the reservoir will fill up to the height
of the water tower so that their pressures are equal. Now when we go to
turn the faucet on, there is only a short short length of pipe connecting the
reservoir to the faucet so we get the full water tower pressure at the faucet
and therefore a strong flow of water to clean our pot with.

To connect this analogy to the concepts of electric potential (i.e. voltage)
and capacitance, we make the following substitutions:

• The reservoir serves the role of the capacitor. Instead of water, a
capacitor stores charge. If we want to store a lot of water, we construct
a large reservoir. Similarly, if we want to store a lot of charge, we use
a capacitor with a large capacitance.
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• Likewise, the water tower serves the role of a battery. Instead of being
a source of constant pressure, a battery is a source of constant voltage.
In the same way the water tower employee does work to keep the water
tower always at the same pressure, a battery uses chemical energy to
always keep constant the electric potential between its positive and
negative terminals.

• Though we are jumping the gun a bit, the long narrow pipe is analagous
to a large electrical resistance. In our example the long narrow pipe
prevented a strong flow of water to the place we needed it. Similarly,
a large electrical resistance prevents a strong flow of charge from the
battery to the electric device which needs it (e.g. light bulb, motor,
subwoofer).

• The faucet serves the role of a switch, which can be used to divert
the flow of charge. When the faucet is off, the reservoir charges up,
and when the faucet is on the reservoir empties out since the tower
can not supply water fast enough to replace the water rushing out of
the faucet. Likewise, when the switch is open, the battery builds up
charge on the capacitor, and when the switch is closed, the charge is
drained off of the capacitor.

(a)

(b)

(c)
(d)

Figure 7: Electrical circuit analog of figure 6. (a) battery, (b) resistor, (c)
capacitor, (d) switch.
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Figure 8: A trap door opens, instantly releasing all the water in the reservoir.
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The electrical analog of figure 6 is shown in figure 7. We have a realiza-
tion of this electrical “circuit” for our demo today. A copper wire is acting
as our switch. It begins connected to only one terminal of the capacitor.
The switch is thus open, and the capacitory charges up to the full voltage of
the supply. Once the capacitor is charged we disconnect it from the power
supply and then connect the dangling end of the copper wire to the other
terminal of the capacitor.

A more apt version of the water analogy is shown in figure 8. We have a
very large reservoir filled up to a high pressure. Then all of the sudden we
release a trap down under the reservoir, and in nearly in an instant all the
gravitational potential energy is converted into kinetic energy. What might
we expect to happen with such a sudden and extreme transfer of matter?
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