
302L S20 lecture 7 - electric potential energy

1 Summary

• Work (denoted by W) is a quantity defined for a force field ~F (~x) acting
in some space and a curve C in that space. For a constant force field
~F (~x) = ~Fo and a curve C given by a straight line from a point ~x1 to
another point ~x2 we have

W = ~Fo · (~x2 − ~x1)

for a general force field ~F (~x) and arbitrary curve C the procedure for
determining W is more complicated.

• For certain force fields ~F (~x), known as conservative force fields, the
work depends only on the start and end points of a curve. Many force
fields in nature are conservative (constant force, gravitational force,
Coulomb force).

• We can associate with any conservative force field ~F (~x) a potential
energy function U(~x). Differences in the potential energy function
measure the work needed to travel between two points. The potential
energy function U(x) obeys a superposition principle.

• The potential energy function associated with an infinite charged sheet
is proportional to the distance from the sheet.

• The total energy E of a particle (not to be confused with electric field
~E(~x)!) in a conservative force field at some instant is defined as the
sum E = T + U of the particle’s kinetic energy T and its potential
energy U .

• The total energy E of a particle is conserved, i.e. its value does not
change as time progresses.

2 Force fields

Consider a particle under the influence of a force field ~F (~x), so that when
the particle is at a position ~x the force on the particle is ~F (~x).1 We list
some important examples:

1A force field is then, like the electric field, a function taking in a point in space and
returning vector ~F (~x).
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• In the case of a free particle, the force is simply zero at all points in
space.

• The next simplest example is the case of a constant force field, where
at any point in space the particle experiences the same force vector ~F .

– The most familiar example is the force of gravity at the earth’s
surface. If we choose a coordinate system where the z direction
points straight up and the x and y directions run parallel to
the earth’s surface, then a particle of mass m at any point near
the earth’s surface experiences a downwards gravitational force
~F = −mgk̂, where g ≈ 9.8m/s2.

– In lecture 5 we found that an infinite sheet with uniform surface
charge density σ generates an electric field everywhere above the
surface equal to ~E = σ

2εo
n̂, where n̂ is the direction normal to the

surface. A particle of charge q would then experience a constant
force field ~F = qσ

εo
n̂. Note that the force field is not totally

constant in that it reverses direction when the particle is below
the sheet.

– In an important sense we can always, for any smoothly varying
force field, find a small enough region where the force field is
essentially constant. This is in fact the situation for gravity at the
earth’s surface. We know that the strength of the gravitational
force on two orbiting bodies (e.g. the earth and sun, or moon and
earth) varies as the inverse square of the distance between them.
The direction of the force on an orbiting object also varies with
the object’s position, staying always parallel to the line joining
the two oribiting bodies.

This is also true for the gravitational force between a projectile
and the earth, so strictly speaking the projectile’s force field is
not constant but varies in strength and direction as the projectile
travels. However, for any reasonable trajectory (i.e. excluding
rocket launches), the vector joining the earth’s center of mass to
the projectile is essentially constant over the full range of the
projectile’s motion. Therefore, the force exerted by the earth on
the projectile is also essentially constant.

For a very similar reason we can also say that the electric field
in the region above the center of a flat plate of charge density
σ and finite (i.e. non-infinite) area is essentially constant and
equal to the value ~E = σ

2εo
n̂ calculated for the infinite charged

plate. Strictly speaking, the true electric field would be equal to
the sum of (see figure 1 for an illustration):

∗ the field ~E+(~x) generated by an infinite plate P+ of surface
charge density σ, and

∗ the field ~E−(~x) generated by an second infinite plate P− of
surface charge density −σ that has a hole where actual plate
lies.
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Figure 1: Illustration of finite-area charged plate as sum of two infinite area
plates of opposite charge, where the second plate contains a void where the
plate originally lied.

This second field ~E−(~x), however, will be essentially zero at points
~x in the region just above the center of the plate, since the charges
comprising plate P− will exert forces primarily parallel to the
plate and these forces will cancel. We are left then with the
electric field ~E+(~x) generated by P+, which is given by ~E+(~x) =
σ
2εo
n̂.

• We also have force fields that vary by an amount proportional to some
displacement x, i.e. we have objects obeying “Hook’s Law”:

F (x) = −x

Where k, known as the “spring constant”, does not depend on the
displacement x. Objects under the influence of this force field will
oscillate about their equilibrium position x = 0.

• Finally we include the example of force fields obeying an inverse square
law which is obeyed by orbiting bodies (Newton’s law of universal
gravitation) and charged partices (Coulomb’s law). We described this
force field earlier in its connection to projectile motion.

3 Work

Given a force field ~F (~x) and some curve C in space we can define a quantity
termed the work (denoted by the symbol W ) done by the force along the
curve. The work is defined explicitly for the case of a constant force field
~F (~x) = ~Fo and a curve C given by a straight line from a point ~x1 to another
point ~x2. Namely:

W = ~Fo · (~x2 − ~x1) (1)

To obtain an approximate expression for the work done by a general force
field ~F (~x) along a general curve C using the following the procedure:

1. Approximate the curve C by a bunch of small line segments L1, L2, . . . , LN
joined end to end. The line segments should be small enough that the
force ~F (~x) is approximately equal for each point ~x along a line segment.

2. Calculate the approximate work

Wi ≡ ~F
(
~̄xi
)
·
(
~x+i − ~x

−
i

)
done along a line segment Li, where ~x−i , ~̄xi, and ~x+i are the beginning,
middle, and end points of theline segment Li.
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3. The total work W is the the sum
∑N

i=1Wi of the works done along
each line segment Li.

In the homework you’ll apply this procedure to calculate the (exact!) work
done in extending a spring from its equilibrium position x = 0 to some
displacement x = A. You will find that

W = −1

2
kA2

4 Conservative Force Fields

Though it is not obvious, it turns out that for many force fields, including
all the ones described earlier, the work done along some curve depends only
on the start and end points of the curve and not on the details in between.
Force fields having this property are known as conservative fields.

Figure 2: Diagram illustrating path independence.

Figure 2 illustrates this concept. If the space in the figure is under the
influence of a conservative force field, we have then that the work for curves
C and C ′ are equal:

WC = WC′

Figure 3: A closed path obtained by joining C and C ′′.
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Refer now to figure 3. Here we have switch the endpoints of the curve
C ′ around, obtaining a new curve C ′′. By the definition of work I claim that

WC′′ = −WC′

(Convince yourself that this is true.) I also note that a closed path can be
obtained by joining curves C and C ′′. The work W done along this closed
path is equal to the sum of the works WC and WC′′ , giving

W = WC +WC′′ = WC −WC′ = WC −WC = 0

So that the work done along a closed curve by a conservative vector field is
always zero.

5 Potential Energy

For a conservative force field ~F (~x) we can define an associated potential
energy function U(~x) which is given by

U(~x) = W~x→~xo

where W~x→~xo is the work done by the force field along a curve going from
~x to some fixed point ~xo. Since the force field is conservative it does not
matter which curve we draw so long as it starts at ~x and ends at ~xo.

By drawing a closed curve going

1. from ~xo to some point ~x1, then

2. from ~x1 to another point ~x2, then

3. from ~x2 back to ~x0,

we find that the difference in potential energies U(~x2) − U(~x1) is equal
to the work W~x2→~x1 done along a curve going from ~x2 to ~x1 and is thus
independent of which point we choose as our fixed point ~xo. This highlights
the important point that it is only differences in potential energy that have
physical significance.

The potential energy function obeys the superposition principle in that if
a conservative force field ~F (~x) can be written as the sum of two conservative
force fields ~F1(~x)+ ~F2(~x), then the potential energy function U(~x) associated
with ~F (~x) can be written as

U(~x) = U1(~x) + U2(~x)

where U1(~x) and U2(~x) are the potential energy functions associated with
~F1(~x) and ~F2(~x), respectively.

Let’s work out the potential energy function U(~x) associated with a
constant force field ~F (~x) = ~Fo. For convenience let’s select our fixed point
to be the origin ~0 ≡ (0, 0, 0). The potential energy U(~x) is then the work
along a curve starting at ~x and ending at ~0. We can pick any curve we like,
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but we will pick the simplest one – the straight line segment. Using equation
(1) we find

U(~x) = ~Fo ·
(
~0− ~x

)
= −~Fo · ~x

Taking ~Fo = −mgk̂ and letting ~x = x̂ı + ŷ + zk̂ we get for the gravitational
potential energy at the earth’s surface a function

U(x, y, z) = −
((
−mgk̂

)
·
(
x̂ı + ŷ + zk̂

))
= mgz

Similarly, for a particle of charge q above an infinite sheet of surface charge
density σ with a normal vector n̂ = k̂ we have

U(x, y, z) = −qσz
2εo

(2)

where we have set the plane z = 0 (i.e. the xy plane) to coincide with the
charged sheet.

Instapoll question: What is the potential energy below the charged sheet
(i.e. for z < 0)?

1. U(x, y, z) = − qσz
2εo

2. U(x, y, z) = + qσz
2εo

3. U(x, y, z) = 0

Hint: how does the electric field above the plate differ from the electric
field below the plate?

Answer: The electric field below the field points down, opposite to its
direction above the sheet. This makes sense since, no matter whether you’re
a proton above or below the sheet, you will still be repelled by the sheet if
σ is positive (and vice versa). Therefore, the work done taking a charge to
the sheet depends only on the distance the charge is from the sheet. We
can write a single equation that handles both the z > 0 and z < 0 cases by
writing

U(z) = −qσ|z|
2εo

Now suppose we add a second sheet of charge, parallel to the first sheet,
with an opposite surface charge density −σ, spaced a distance d away from
the first sheet. What is the resulting potential energy function U(x) between
the two sheets? See figure 4 for an illustration.

By the superposition principle the potential energy function of the com-
bined system U(x, y, z) should be equal to the sum U+(x, y, z) +U−(x, y, z)
of

• the potential U+(x, y, z) = − qσz
2εo

of the lower sheet with +σ surface
density, which we already solved for, plus

• the potential U−(x, y, z) of the upper sheet with −σ surface charge
density.
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Figure 4: Two parallel planes with opposite surface charge densities ±σ.

However, the electric field generated by the lower sheet in the region below
it is exactly the same as the electric field generated by the upper sheet in
the region above it! Therefore, the potential energy function in the region
between the sheets is simply double what it was before we added the second
sheet, i.e. in the region 0 < z < d we have

U(x, y, z) = U+(x, y, z) + U−(x, y, z) = −qσz
εo

To think about at home: what is the potential below the lower sheet now?
Above the upper sheet?

As a bit of an aside I should mention that the potential energy actually
encodes all the information about its associated (conservative) force field, so
that we can recover the force field from knowledge of its associated potential
energy function. For instance, to get the ı̂ component at a point ~x of the
force field ~F (~x) associated with a potential energy function U(~x), construct
a line segment L with starting point ~x and endpoint ~x+∆x̂ı. Make ∆x small
enough that the force field is essentially constant along the line segment. We
find then that work along the line segment is

WL = ~F (~x) · (~x+ ∆x̂ı− ~x) = ∆x~F (~x) · ı̂ = U(~x)− U(~x−∆x̂ı)

or in other words

~F (~x) · ı̂ =
U(~x)− U(~x−∆x̂ı)

∆x

To get the components of the force field along the ̂ and k̂ directions we
repeat the procedure, making the substitution ı̂ → ̂ and ı̂ → k̂. By this
process we can use the potential energy function as a blood hound to “sniff
out” the associated force field.

6 Work-energy Principle

As it stands we haven’t given any reason why we should care about the work
associated with some curve in a force field. The work concept only obtains
its significance via the work-energy principle, explained below.
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Consider a particle moving along a trajectory C under the influence of
a force field ~F (~x). Note that a trajectory is not any old curve, but is one
where at all points ~x along the trajectory we satisfy Newton’s second law so
that the particle’s acceleration ~a at ~x is related to the force ~F (~x) at ~x by

~F (~x) = m~a

Since we have a force field ~F (~x) and a curve given by our trajectory C, we
can ask about the work W done by the force field along the trajectory. It
turns out that, for any force field (conservative or not), the work W along a
particle’s trajectory is equal to the difference ∆T ≡ T ′−To in the particle’s
initial kinetic energy To and its final kinetic energy T ′, i.e.

W = ∆T = T ′ − To (3)

7 Energy conservation

If a particle moving under the influence of a conservative vector field has
some trajectory starting at a point ~xo and ending at a point ~x′, then the
work-energy principle (equation 3) tells us

Uo − U ′ = W = ∆T = T ′ − To

where Uo ≡ U(~xo) and U ′ ≡ U(~x′). Rearranging we find

To + Uo = T ′ + U ′ (4)

Equation (4) tells us that the sum E ≡ T + U of the potential and kinetic
energies is conserved, i.e. that a loss/gain in either of the quantities over time
implies a corresponding gain/loss in the other. We call this sum E the total
energy (or just the energy) of the system. Conservation of energy is great
convenience, aiding in the solution of many varieties of physics problems.

Energy conservation is also in some sense surprising. Refer to figure
5, which shows three season-appropriate projectile trajectories. All three
trajectories have the same start and end points. Despite the large differences
in the magnitudes/directions of their initial velocity vectors, we find the
difference in their final and initial kinetic energies is the same.

As an example, consider an electron located just outside an infinite sheet
of postive surface charge density σ > 0. It is initially traveling with kinetic
energy To in the direction normal to the plate. How far does the electron get
from the plate before it turns around and heads back? Assume that gravity
can be neglected, i.e. g → 0.

Answer:
From earlier we saw that the potential energy U(z) of a particle with

charge q when it is a distance z away from an infinite sheet with surface
charge density σ is

U(z) = − qσ
2εo

z

in our case our particle is an electron (i.e. q = −e)so

U(z) =
eσ

2εo
z
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Figure 5: Diagram of three different trajectories with identical starting and
ending points.

The total energy E of the electron is given by the sum of its kinetic and
potential energies. Since the electron is initially at z = 0 we can say that
the particle starts with a total energy E given by the sum

E = To + U(z = 0) = To + 0 = To

Conservation of energy tells us that if, sometime later, the electron is now
at a distance z from the surface, we can determine its new kinetic energy T ′

by
T ′ = E − U(z) = To − U(z)

The particle begins moving straight away from the surface, so that all of
its kinetic energy is from its velocity in the z direction. When the particle
turns around then its total velocity is exactly zero, and therefore we want
to know the distance z when

T ′ = To − U(z) = 0

or
U(z) =

eσ

2εo
z = To

or, after some algebra,

z =
2Toεo
eσ
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