
Lecture 5: Applications of Gauss’ Law

1 Gauss’ Law Recap

In the previous lecture we introduced Gauss’ law, which states that the electric flux Φ through a closed
surface is given by

Φ = qenc/εo

where qenc is the charge enclosed by the surface, and εo ≈ 8.85 · 10−12 C2 N−1 m−2 is the permittivity of
free space, a constant introduced from Coulomb’s law.

We also determined an expression for the electric flux ∆Φ through some small flat patch characterized
by the vector ∆ ~A(~x) where:

• |∆ ~A| ≡ ∆A is the area of the patch,

• ∆ ~A/∆A is a unit vector pointing in the direction normal to the patch; that is, the direction perpen-
dicular to any line contained on the patch, and

• ~x is the location of the center of the patch. It is not important where exactly we call the center since
the patch is assumed to be very small.

This flux ∆Φ we found to be
∆Φ = ~E(~x) ·∆ ~A

where ~E(~x) is the electric field vector at the patch center ~x. Note that this expression is only perfectly
accurate when the electric field is constant over the whole patch. Because the patch is assumed to be small
the assumption of constancy is a good one. In the case where this assumption is not good we must replace
the right hand side with the average of the quantity ~E(~x′) ·∆ ~A over every point ~x′ on the patch (not just
the patch center ~x).

If we construct a closed surface by piecing together some large number of small patches ∆ ~Ai(~xi), i =
1, 2, . . . , N , then by summing the through through each patch we obtain the following relationship:

N∑
i=1

~E(~xi) ·∆ ~Ai = qenc/εo

2 Symmetry

In the sections following we will apply the above formula to determine the electric field generated by
continuous charge distributions. In previous lectures and homework we saw that, from the formula for the
electric field generated by a point charge and the principle of superposition, we could determine the electric
field generated by multiple point charges. This technique however becomes impractical (impossible, really)
when we have a continuous charge distribution, which can be thought of as an infinite collection of small
charges spread out over space.

1



In some cases we can get around this difficulty if the distribution possesses a sufficiently high degree
of symmetry. The symmetry of an object is the number of ways we can transform space and leave the
object the same. One simple example of symmetric objects is given in figure 1. For both a butterfly and
an isoceles triangle we find that we can reflect each point about some axis and the resulting object will be
identical to the object we had before the reflection.

We similarly can construct charge distributions that possess this same symmetry. For instance, referring
to the isosceles triangle in figure 1 we can place two equal charges on the two lower corners of the triangle
and one unequal charge on the upper corner. After the reflection we obtain an identical charge distribution
since the lower charges swap and the upper charge stays put.

Figure 1: Two objects possessing a single reflection symmetry.

An example of an object with a higher symmetry is given by the equilateral triangle, shown in figure
2. This object now has two more reflection axes in addition to the one possessed by the isosceles triangle
(shown in blue). Additionally we have two rotational symmetries (shown in red) in that we can rotate
every point about the center of the triangle by ±120◦ and we get the same equilateral triangle back. To
obtain a charge distribution with these same symmetries we must place equal charges on all three corners.
If the upper charge is not equal to the two lower charges, then application of any of the new symmetry
operations will modify the original charge distribution.

Figure 2: An equilateral triangle.

The circle is the most symmetrical object we can draw on a plane. See figure 3. We see that the circle
is infinitely symmetric in that we can
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• rotate space by any angle θ about the circle’s center, or

• reflect space about any line intersecting the center

and get the same circle back. To obtain a charge distribution with this symmetry it is now necessary to

Figure 3: Symmetries of the circle

smear charge uniformly around the entire circle.

3 Applications to various charge distributions

3.1 Spherical distributions

In three dimensions we encounter objects with even higher symmetry than the circle. Our first example
will be the spherical charge distribution. See figure 4. With the sphere we can take any line intersecting the
sphere’s center and rotate space about this line by any angle without modifying the shape of the sphere.

Figure 4: Symmetry of the sphere

Our task is the determine the electric field ~E(~x) generated at a point ~x by a spherical charge distribution
with net charge Q. The “general procedure”, which we will apply in all the examples covered in this lecture,
is the following:
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Figure 5: An electro-witch.

1. (a) Exploit the symmetry of the charge distribution to determine which points in space have the
same electric field strength | ~E(~x)| ≡ E(~x).

(b) Also using symmetry arguments, determine the direction of the electric field ~E(~x) at each point
~x.

2. Use the Gauss’ law, along with the information obtained in the previous step, to determine the
strength | ~E(~x)| ≡ E(~x) of the charge distribution at each point ~x.

Putting the two steps together we obtain the complete description of the electric field ~E(~x) generated by
the charge distribution.

To support us in this endeavor the University has generously allocated some funds which we have used
to hire an outside consultancy of “electro-witches”. These witches are able to determine the electric field
~E(~x) generated by our charge distribution at any point ~x in space. Refer to figure 5. The witch reports
her result as a sequence of three numbers, En, Eh, Ek. These numbers correspond to the component of the
electric field along three vectors n̂, ĥ, k̂ so that we have

~E(~x) = Enn̂+ Ehĥ+ Ekk̂ (1)

The three vectors n̂, ĥ, k̂ are defined by the following conventions:

• n̂ points along her nose, which she always keeps pointed towards the point ~x where she is evaluating
the electric field,

• ĥ points along the direction of her pointy hat, and

• k̂ points along the direction of her knife, which she always keeps pointing out to her right side.

These are vectors are of unit length, i.e.

n̂ · n̂ = ĥ · ĥ = k̂ · k̂ = 1
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and mutually perpendicular in the sense that

n̂ · ĥ = ĥ · k̂ = k̂ · n̂ = 0

Such a trio of vectors are known collectively as an ortho-normal basis (see the vector practice assignment).
Note that the direction of these unit vectors are not fixed in space but change as the witch changes her

orientation. 1

We might wonder how it is these witches are able to measure the electric field. This information is, of
course, closely guarded domain knowledge, but I suspect they do something similar to the following:

• The witch places a proton at the location ~x, then

• releases it and measures the different components an, ah, ak of its acceleration ~a resulting from the
forces applied on it by the charge distribution under consideration.

• Then, since in general we have ~F = m~a = q ~E, the witch uses her knowledge of the proton mass
m = mp and charge q = +e to obtain ~E = m~a

e .

Let’s assume this to be the case, so that instead of imagining the electric field vector ~E that a witch
measures at some point ~x we can equivalently consider the acceleration ~a of a proton released at the point
~x. In the diagrams I put a small circle with a plus (+) sign at the points ~x where electric fields are being
measured to indicate this hypothetical proton.

Alright then, let’s place two electro-witches in the vicinity of our spherical charge distribution, one
observing the electric field at a point ~x1, and the other observing the electric field at a point ~x2 (see figure
6). Both points lie a distance r away from the charged sphere’s center. For convenience we have set the
origin of our external coordinate system (not the witch’s internal n̂, ĥ, k̂ system!) to be the sphere’s center,
so that ~x1 is then the vector pointing from the sphere’s center to the location where we are measuring the
electric field (verify this for ~x1 and ~x2 on the figure).

For the spherical case we establish now a rule for the witches requiring that their nose be colinear with
the line joining the sphere center to the point ~x where they are currently measuring the electric field. This
requirement is in addition to the one stated previously where the nose must also point towards the point
~x. Combining the two, we can conclude that n̂ is parallel to ~x.

Since the two witches are observing the electric field at two different points ~x1 and ~x2 and with different

orientations
(
n̂1, ĥ1, k̂1

)
and

(
n̂2, ĥ2, k̂2

)
, we would expect for an arbitrary (i.e. non-spherical) charge

1In the vector practice homework I emphasize that a vector is a sequence of three numbers. At the risk of being pedantic
I will point out that, as it stands, it does not even appear we’ve defined the electric field vector ~E(~x) at a point ~x since we
haven’t specified how it corresonds to a sequence of three numbers. We do not want to use the three numbers En, Eh, Ek since
they will change as the orientation of the witch changes and we would like the vector ~E to have a definition independent of the
particular way we’ve oriented the witch. Instead we express the vectors n̂, ĥ, k̂ in terms of some fixed external ortho-normal
basis of vectors, which I’ve labeled α̂, β̂, γ̂ (see figure 5 for their illustration). What I mean is that, given a witch orientation,
we find the three numbers nα, nβ , nγ that satisfy the equation

n̂ = nαα̂+ nβ β̂ + nγ γ̂

and likewise for ĥ and k̂ so that
ĥ = hαα̂+ hβ β̂ + hγ γ̂

and
k̂ = kαα̂+ kβ β̂ + kγ γ̂

It doesn’t matter how we pick α̂, β̂, γ̂ so long as they are fixed (i.e. independent of any witch’s orientation) and ortho-normal.
We then define n̂ to be the sequence of coefficients (nα, nβ , nγ), and similarly for ĥ and k̂. Since the n̂, ĥ, k̂ are now each
associated with their own triplet of numbers, we can then use equation 1 to associate each electric field vector ~E(~x) with its
own triplet of numbers that is independent of the orientation of the witch used to measure it.
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Figure 6: Electro-witches measuring the electric field at two points ~x1 and ~x2, both a distance r away from
the sphere center.

distribution that their measurements to differ so that possibly

(En( ~x1), Eh( ~x1), Ek( ~x1)) 6= (En( ~x2), Eh( ~x2), Ek( ~x2))

Note, however, the physical scenario each witch encounters in the spherical case. (It is helpful here to
imagine yourself as one of these witches.) Both witches see a proton located directly in front of their nose
and some distance r behind this a proton they see a sphere.

In light of this observation, we are forced to conclude their measurements of the proton acceleration
(and thus the electric) must be equal, i.e.

(En( ~x1), Eh( ~x1), Ek( ~x1)) = (En( ~x2), Eh( ~x2), Ek( ~x2)) (2)

This is the essence of symmetry arguments in physics. If two experimenters encounter an identical physical
scenario we require that they obtain identical results.

Note, crucially, that equation (2) does not assert that the electric field vectors at the two different points
are equal, i.e. we can not conclude ~E(~x1) = ~E(~x2). Indeed we shall see that the vectors are not equal. We
only assert that the components of the vector ~E(~x1) as expressed in the first witch’s internal coordinate
system are the same as the components of the vector ~E(~x2) expressed in the second witch’s coordinate
system. This fact, however, is enough to establish the equality the lengths of the two vectors (check this!).
From here we note that our selection of ~x1 and ~x2 was arbitrary, only requiring |~x1| = |~x2| = r. Therefore,
we can conclude that the strength | ~E(~x)| ≡ E(~x) of the electric field vector at any point ~x depends only
on the length r of the vector ~x, so that in the function E(~x) we can replace the argument ~x with just its
length r, i.e. E(~x)→ E(r). This completes step 1.(a) of the general procedure for determining the electric
field of our charge distribution.
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To execute step 1.(b) of the general procedure we consider a different scenario. Refer to figure 7.
Instead of placing two witches in different locations, we:

1. have a witch measure the electric field at some location, which she reports in terms of the components
En, Eh, Ek referenced to her internal coordinate system n̂, ĥ, k̂.

2. Then, we rotate the witch by 180◦ about her nose (n̂) and have her repeat the measurement. This
time she reports a result E′n, E

′
h, E

′
k referenced to her new internal coordinate system n̂′, ĥ′, k̂′.

We now make three observations concerning these measurements:

1. As a result of the 180◦ rotation we find that

(a) the vector n̂ is unchanged so that n̂′ = n̂, and

(b) the vectors ĥ and k̂ are both flipped so that ĥ′ = −ĥ and k̂′ = −k̂.

2. The 180◦ rotation was performed on the witch and not the electric field vector that she is measuring.
Therefore, we assert that ~E′ = ~E, or in other words

Enn̂+ Ehĥ+ Ekk̂ = E′nn̂
′ + E′hĥ

′ + E′kk̂
′

3. Finally, the physical scenario that the witch encounters after being flipped upside down is identical
to one she encountered before she was flipped. Therefore, we also assert that the results of her
measurements be identical so that

E′n = En, E
′
h = Eh, E

′
k = Ek

These three observations can be combined to arrive at the following conclusions:

En = En, Eh = −Eh, Ek = −Ek

The first of these equations tells us nothing new (any number is obviously equal to itself), but the following
two tell us that the Eh and Ek components are equal to their negatives. Well the only number equal to
its negative is zero, so we can conclude

Eh = Ek = 0

Or, in other words, the electric field at any point ~x in space points parallel to n̂. Since we arranged in the
beginning of the problem to always have the witch’s nose pointing parallel to ~x, this also means

~E(~x) ‖ ~x

so that we find the electric field points at all points in the direction away from the sphere’s center2.
This completes step 1.(b) of our general procedure. We finish the derivation with step 2 of our general

procedure, which is illustrated in figure 8. We have constructed a hypothetical (or “Gaussian”) surface in
the shape of a sphere using N small patches ∆ ~Ai i = 1, 2, . . . , N , each located at a position ~xi. The flux Φ
through the entire surface is given by

Φ =
N∑
i=1

~E(~xi) ·∆ ~Ai

2Actually it may in some cases point in the opposite direction, i.e. towards the sphere’s center, depending on the charge of
the sphere.
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Since the patches ∆ ~A(~x)i are all tangent to the sphere, their surface normal, which is defined to be the
direction of the ∆ ~A, points away from the center of the sphere, i.e.

∆ ~A ‖ ~xi

Recall from step 1.(b) in the general procedure where we found that the electric field also points away from
the sphere’s center, so that for any patch center ~xi we have

~E(~xi) ‖ ~xi

so that
~E(~xi) ‖ ∆ ~A

The dot product ~a ·~b of two parallel vectors is simply the product of their magnitudes |~a||~b| so we have

~E(~xi) ·∆ ~Ai = | ~E(~xi)||∆ ~Ai| = E(ri)∆Ai

where ri is the length |~xi| of the vector ~xi and ∆Ai ≡ |∆ ~Ai| is again just the area of the patch.
The patch centers are all equidistant from the sphere center so that ri is independent of i. Setting then

ri → r for every i we have

Φ =
N∑
i=1

~E(~xi) ·∆ ~Ai

=
n∑
i=1

E(r)∆Ai

=E(r)
n∑
i=1

∆Ai

=E(r)4πr2

where in the last step we notice that the sum of the areas of all the patches should be equal to the surface
area 4πr2 of a sphere of radius r.

From Gauss’ law we can say the flux Φ is also equal to 1
εo

times the charge enclosed by the surface,
which is simply Q, the charge of the charged sphere. Therefore we find

E(r)4πr2 =
Q

εo

or

E(r) =
Q

4πεor2

Combining this result with our knowledge that the electric field ~E(~x) lies in the direction of the unit vector
x̂ ≡ ~x

r (remember r ≡ |~x|) we find

~E(~x) =
Q

4πεor2
x̂

So we find that the electric field of a sphere with charge Q is equal to electric field of a particle with
the same charge Q positioned at the sphere’s center. The (somewhat unsurprising) result may familiar
from the study of gravity, where an object orbiting under a spherical object of mass M traced the same
trajectory as an object orbiting a point particle with the same mass M .
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Careful though! In the execution of step 2 we made the (implicit) assumption that our Gaussian sphere
enclosed the charged sphere. How does our analysis change if our charged sphere is a thin shell of, say,
radius b, and we construct a Gaussian sphere of radius a < b, so that the Gaussian sphere is inside the
charged shell? The analysis in step 1. of our general procedure still applies, but what modification must
we make in step 2.? What if our charge distribution consists of two thin shells of radius a and b containing
charge Qa and Qb, respectively, and we construct a Gaussian sphere of radius c where a < c < b?

3.2 Cylindrical distributions

Next we consider charged cylinders that are infinitely long. The charge of the cylinder is characterized
by a linear charge density λ so that the charge Q contained in some section of the cylinder of length l is
Q = λl. We further assume that the linear charge density λ is constant along the length of the cylinder.

The strategy for determined the electric field generated by this charge distribution will be nearly
identical to the case of the sphere; we only have to make a couple adjustments to take account differences
in their symmetry.

Refer to figure 9. We adopt the conventions that any witch’s hat ĥ always point parallel to the cylinder’s
axis of symmetry, and that her nose lies along the line joining the hypothetical proton to the cylinder axis.
In the illustrated scenario one witch measures the electric field vector at a location some distance r from
the cylinder and another witch measures the field vector at another position obtained by

• a rotation ∆ about the cylinder’s axis of symmetry (pointing up and down in the figure), followed by

• a displacement ∆z along the symmetry axis.

Note that this implies the second point also lies a distance r from the cylinder axis. Because of the
cylinder’s symmetry, we find, like we did in part 1.(a) of the spherical case, that the witches encounter
identical physical scenarios and thus measure the same components for the electric field in their internal
coordinate systems. This in turn implies that the strength | ~E| of the electric field vector is the same at
either point. We conclude then that the strength of the electric field generated by a cylindrical charge
distribution at some point ~x depends only on the distance r that point is from the cylinder axis, so that

E(~x)→ E(r)

This completes step 1.(a) of the general procedure.
The argument for step 1.(b) for the cylindrical case is identical to the spherical case. Refer to figure

10. The witch measures the electric field at some point, and measures it again after being rotated about
her nose (n̂) by 180◦. The physical scenario she encounters is identical3 in either orientation, so we can
reuse the argument detailed in the spherical case to conclude

Eh = Ek = 0

so that the electric field points at any point directly away from the cylindrical axis4. This completes step
1.(b) of our general procedure.

Step 2 of the general procedure also works out similar to the spherical case. Refer to figure 11. We have
drawn in blue a cylindrical Gaussian surface of length l and radius r. The patch vectors ∆ ~A composing
the curved wall of the have their normal vectors pointing away from the cylinder axis and thus parallel to

3Note that this would not be the case if there were, for instance, some electrical current flowing down the cylinder. In this
scenario the witch would observe a downwards flowing current in her first orientation and an upwards flowing current after
being flipped upside-down.

4or directly towards it, depending on whether the charge density λ is positive or negative.
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the electric field. The total flux Φ through the curved wall is thus equal to the magnitude of the electric
field E(r) at the wall multiplied by the surface area of the curved wall, which is 2πrl, so that

Φ = E(r)× 2πrl

The situation is different for the patch vectors composing the flat caps on the top and bottom of the
Gaussian surface. These patches point along the cylinder axis, which is perpendicular to the direction of
the electric field. Since the dot product of perpendicular vectors is always zero, we find that the end caps
do not contribute to the electric flux. Therefore we find that

Φ = 2πrlE(r)

Since the cylinder encloses a length l of the charged cylinder, and the charge contains a quantity λ charge
per unit length, we obtain from Gauss’ law

Φ = λl/εo

Equating the alternative expressions for the flux we arrive at

2πrlE(r) = λl/εo

or

E(r) =
λ

2πrεo

If for a point ~x we let r̂ be the unit vector pointing directly away from the cylinder axis we arrive at the
complete expression for the electric field ~E(~x) produced at a point ~x by an infinitely long cylindrical of
linear charge density λ:

~E(~x) =
λ

2πrεo
r̂ (3)

where again r is the distance from the point ~x to the cylinder axis and r̂ is a unit vector pointing directly
away from the axis. We could alternatively express this by defining for each point ~x the vector ~r to be
the shortest vector we can draw from the cylinder axis to ~x, i.e. the vector that leaves the cylinder axis
at a right angle and ends at the point ~x. Then we would say r ≡ |~r| and r̂ ≡ ~r/r. See figure 12 for an
illustration. Again, we want to be careful applying the conclusion in equation (3). If, for instance, we had
a thin cylindrical tube of radius b for our charge distribution, and we constructed a Gaussian surface of
radius a < b, what would we conclude about the electric field inside the tube?

3.3 Planar distribution

Finally we consider a planar distribution of charge. The plane extends infinitely far in both lateral direc-
tions5. The charge on the plane is characterized by its surface charge density σ so that the charge over
any region of the surface is given by σA, where A is the area of the region.

As with the previous two cases we begin by analyzing the electric field measured at two different points.
Refer to figure 13. We adopt the convention for the planar distribution that the witch’s nose always lie
colinear with the shortest line joining the plane to the point ~x where the witch measures the electric field.
When we additionally take into account the convention established earlier requiring the witch’s nose to
point towards ~x, we find that her nose n̂ points always normal to the plane.

With these conventions established we then find that we can displace the observation point ~x by any
amount ∆x and ∆y in the lateral directions without modifying the physical scenario observed by the witch.

5We can just as well consider the plane to be a circle of infinite radius.
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This tells us that the strength of the electric field E(~x) can depend only on the distance d from the point
~x to the plane, i.e. E(~x)→ E(d). This completes step 1.(a) of the general procedure.

Step 1.(b) of the general procedure is carried out in exactly the same way as the cylindrical and spherical
distributions. Since we can rotate a witch by 180◦ about her nose n̂ without modified the physical scenario
she observes, we can conclude

Eh = Ek = 0

so that the electric field vector at any point is directed along the plane’s normal.
For step 2.(b) we construct a cylindrical Gaussian surface of length 2d and endcaps of area A. The

Gaussian cylinder intersects the charged plane halfway along the cylinder’s length. See figure 14 for an
illustration.

To compute the electric flux Φ through the Gaussian cylinder we observe that, in constract with the
charged cylinder, it is now the surface patch vectors comprising the end caps which point parallel to the
electric field, yielding a flux

Φ = 2AE(d)

The patch vectors comprising the curved walls do not contribute to the electric flux since they now point
perpendicular to the electric field.

The charge enclosed by the Gaussian cylinder is the cylinder’s cross-sectional area A multiplied by the
surface charge density σ. From Gauss’ law we can then conclude

2AE(d) = σA/εo

or
E =

σ

2εo

so that the electric field strength E(~x) turns out to be independent of not only the lateral coordinates of
~x, but also the separation d of the point ~x from the surface. Leaving behind our electro-witches, we now
let n̂ stand for the unit vector normal to the charged plane so that

~E =
σ

2εo
n̂
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Figure 7: A single electro-witch measuring the electric when she is right-side up (top half) and up-side
down (bottom half).
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Figure 8: Charged sphere surrounding by spherical Gaussian surface. The Gaussian sphere is approximated
by many flat patch vectors ∆ ~Ai(~xi), i = 1, 2, . . . , N .
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Figure 9: Two witches measure the electric field produced at two points by an infinitely long cylindrical
charge distribution with linear charge density λ.
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Figure 10: A witch measures the electric field generated by a cylindrical charge distribution in two different
orientations: right-side up (upper half) and up-side down (lower half).
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Figure 11: A cylindrical Gaussian surface of length l and radius r drawn around an infinitely long cylindrical
charge distribution
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Figure 12: Illustration of the vector ~r associated with a point ~x
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Figure 13: Witches measuring the electric field generated by an infinite charged plane.
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Figure 14: Gaussian surface (in blue) used to compute the electric field generated by the charged plane (in
red).
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