
302L S20 Homework 3 solutions

1. The ith sub-segment ~x−i → ~x+
i starts at a point ~x−i ≡ ~x+ (i− 1)∆x

N n̂
and ends at ~x+

i ≡ ~x + i∆x
N n̂. If it is not clear why this is then check

that:

• The first subsegment starts at ~x−1 = ~x.

• The last subsegment ends at ~x+
N = ~x+ ∆xn̂.

• ~x+
i = ~x−i+1 so that the end of one line subsegment is the beginning

of the next.

• The difference ~x+
i − ~x

−
i = ∆x

N n̂ is the same for every i, and when
we add up their lengths we get N ∆x

N = ∆x which is the length of
the full path we want to calculate the work over.

Therefore our choice of the start and end points ~x±i for the subsegments
indeed results in a equal division of the line segment ~x → ~x + ∆xn̂
into N equal subsegments.

We are assuming each subsegment is short enough that the work Wi

done over a subsegment can be calculated using the formula for the
work W done by a constant force ~Fo over a straight line segment
~x1 → ~x2.

W = ~Fo · (~x2 − ~x1)

To apply this formula to calculate Wi we make the substitutions:

• ~x1 → ~x−i

• ~x2 → ~x+
i

• ~Fo → ~F (~x+
i )

Note that we could equally well substitute in the starting point ~x−i into
~F (~x) to get ~Fo, or any other point lying on the subsegment1. Because
the subsegment is so short (i.e. N is so large), the force is essentially
constant over the subsegment so it does not matter which point along
the subsegment we choose to evaluate ~F (~x) to get ~Fo. Choosing the
subsegment’s endpoint ~x+

i will end up being simply a more convenient
choice than other points.

1In fact it would make most sense to use the midpoint of the line segment, since it
best represents the average value of the force along the subsegment. It turns out for this
problem that using the midpoint actually produces an answer that is exactly correct for
any N , not just N very large.
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Plugging in these substitutions we find:

Wi = ~F (~x+
i ) ·

(
~x+
i − ~x

−
i

)
= −F oN

i

N
n̂ · ∆x

N
n̂ = −F oN∆x

i

N2

2. Summing up all the Wi we get

W =
N∑
i=1

Wi =
N∑
i=1

(
−F oN∆x

i

N2

)
= −F oN∆x

1

N2

N∑
i=1

i

Here I will walk through how to calculate
∑N

i=1 for any even N :2

• The first and last terms in the sum are 1 and N . Adding them
together we get N + 1.

• The second and second-to-last terms are 2 and N − 1. Adding
these together we also N + 1.

• Continuing in this way we getN/2 pairs (1, N), (2, N−1), . . . , (N/2, N/2+
1) that all add to N + 1. Note this logic only works if N is even

• Adding all the pairs together we get
∑N

i=1 i = N
2 (N + 1).

so that

W = −F oN∆x
N/2(N + 1)

N2
= −1

2
F oN∆x

N + 1

N

3. In this problem we are essentially asked to show that

N + 1

N
≈ 1

When N is very large. This is somewhat obvious just looking at it
(certainly a million plus one is close to a million), but if we want to a
more convincing argument we could distribute the denominator to see
that

N + 1

N
=
N

N
+

1

N
= 1 +

1

N

As N gets very large, 1/N gets very small so that it is very close to
zero and we can ignore it3. Making this substitution to our expression
for the work we get that

W = −1

2
F oN∆x

Note the work is negative. This makes sense since

2The result turns out to be true for odd N as well, and if you’re curious I leave it to
you to work out why this is.

3How close to zero is close enough? Well pick any small number you like as your
threshold for “close enough” and call it ε. I can always find a number N large enough
that 1/N is closer to zero than your threshold ε. This is precisely what mathematicians
mean when they say “take the limit where N goes to infinity”, i.e.

lim
N→∞

1

N
= 0
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• we expect the confining force to repel particles traveling across
the surface layer, causing them to slow down and lose kinetic
energy, and

• by the work-energy principle, the work done along some particle’s
trajectory is equal to the kinetic energy gained by the particle
over the course of trajectory.

4. The electric field vector ~E at a point on the surface of a conductor
with surface charge density σ is

~E =
σ

εo
n̂

This electric field vector produces a force ~F on electrons at this point
on the surface given by

~F = −e ~E = −eσ
εo
n̂

Note this force acts either anti-parallel or parallel to n̂ depending on
whether σ is positive or negative. We are trying to eject electrons,
so we want to apply a force parallel (not antiparallel) to the surface
normal, and therefore we need a negative surface charge density σ.

This is consistent with our conception of particles at the surface of like
charge trying to push each other out of the surface. This pushing is
typically opposed by the confining force ~FN , which was the subject of
the first three questions. In other words, the net sum ~FΣ of the forces
on an electron at the surface is given by

~FΣ = −e ~E + ~FN

Since these forces must balance in equilibrium (i.e. ~FΣ = ~0) we have

~FN = e ~E

This is telling us that as the surface charge density σ (and thus | ~E|
increases), the increased mutual repulsion pushes electrons deeper into
the surface layer4, and, as they push deeper, the confining force |~FN |
they experience increases until equilibrium is reestablished (i.e. force
balancing is restored).

At a high enough surface charge density σ the resulting electric field
will be stronger than the maximum confining force strength F oN . This
occurs when

−F oN n̂ =
eσ

εo
n̂

or

σ = −
F oN εo
e

4i.e. away from the blue layer and towards the fuschia layer in figure 1 of the homework
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I asked you to express the answer not in terms of F oN but instead
in terms of the work function Φ = |W |, which can be measured us-
ing photoemission experiments (discussed in problem 5). Making the
appropriate subsitution we get

σ = −2
Φεo
∆xe

Note that the vector nature of problem does not really come into play
since the vectors fields and line segments involved all point parallel or
anti-parallel to one another.

5. (a) After the electron absorbs the photon, it possesses Eγ in kinetic
energy. The electron’s journey through through the surface layer
has an associated work W = −Φ. The work-energy principle
states that the change ∆T in a particle’s kinetic energy after
completing some trajectory is equal to the work W done along
that trajectory, i.e.

W = ∆T = T ′ − To

where To and T ′ are the initial and final kinetic energies, respec-
tively. Setting To → Eγ we have

T ′ = Eγ − Φ

(b) In lecture 7 we learned that the potential energy function U(x, y, z)
for a particle of charge q between two infinite sheets of opposite
surface charge density ±σ is given by

U(x, y, z) = −qσz
εo

where the sheet of surface charge density +σ is at z = 0 and the
sheet of surface charge density −σ is at z = d. In our current
problem we refer to the distance x between the electron and plate
A, so in adapting this formula to our problem it is most conve-
nient to let plate A correspond to the sheet of surface charge
density +σ and make the subsitution of notation z → x. In other
words,

U(x) =
eσx

εo

is the potential energy of an electron q = −e lying a distance x
away from plate A (and thus a distance d−a away from plate B).
It remains to determine σ, the surface charge density of plate A.

We are given that Ne electrons have been transferred from plate A
to plate B. The means there is a net charge −eNe on plate B and,
by charge conservation, a net charge +eNe. Since the plates are,
by assumption, conductors, we assume that the charge spreads
out evenly over the front faces of the plates. (The “front face” of
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plate A is the one facing B and likewise for the front face of B.5)
Therefore the surface density at the front face of a plate should
be the net charge on that plate divided by the area of the face,
i.e.

σ =
eNe

πr2

for plate A and −σ for plate B. Therefore

U(x) =
e2Nex

πr2εo

(c) Conservation of energy tells us that the sum E = T (x) +U(x) of
the electron’s kinetic energy and potential energy does not depend
on the electron’s distance x from plate A. Since we know that at
x = 0 the particle has a kinetic energy T (0) = Eγ −Φ (part (a)),
and a potential energy U(0) = 0, then it’s kinetic energy T (d)
just before reaching plate B is

T (d) = T (0) + U(0)− U(d) = Eγ − Φ− e2Ned

πr2εo

When T = 0, the electron has completely stopped, at which point
it turns around and heads back to plate A.6 Therefore no electron
will be able to reach plate B when Ne is so large that

T (d) = Eγ − Φ− e2Ned

πr2εo
= 0

This occurs when

NMAX
e =

πr2εo (Eγ − Φ)

e2d

Therefore, by measuring the number of electrons Ne transferred
between the plates we could obtain a measure of the work function
Φ. Actually, if we had a way of measuring the electric potential
V (d) = U(d)/(−e) = − eNed

εo
between the plates then we could

determine Φ by the simple expression

Φ = Eγ + eV (d)

but more on this later.

5If charge accumulated on the back faces of A or B then there would be an electric
field inside the plates, which is prohibited for conductors. It is also physically reasonable
that the opposite charges on the plates would be attracted to each other.

6Note that the electron may turn around before T = 0 if it has some of its kinetic
energy (i.e. velocity) in a direction parallel to the plates. This is familiar from the case
of projectile motion, where a projectile may stop rising and begin to fall even when it
has still has kinetic energy in the horizontal direction. The process of photoemission is
random in the sense that electrons are emitted in a wide range of initial directions so that
actually only a small fraction start off traveling straight towards plate B. In any case, the
point here is that certainly no electron can continue traveling towards B when all of its
kinetic energy is gone.
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