
302L S20 Homework 3 - The surface layer and the

work function

Due Friday February 14th by 3pm in my mailbox on the fifth floor of PMA
(RLM).

Concepts covered: work, electric field at conducting surfaces, field emission,
photo-emission, work-energy principle, electric potential between charged
plates, conservation of energy.

Note: question 1 starts at the end of page 3

In lecture 6 we argued that a confining force field, which we will call
~FN (~x′) (in reference to the N ormal direction in which it acts), balances
the electrical force ~F (~x′) acting on the charge carriers at the surface of a
conductor, so that the charge carriers stay confined to the surface, i.e. so
that ~F (~x′) + ~FN (~x′) = 0. The confining force does not originate from the
surrounding surface charge density (i.e. it persists even when σ = 0) but is
rather an independent effect arising from the chemistry of the surface.

Let us describe this confining force in the following way. Refer to figure
1. Suppose the surface is not infinitely thin but forms a shell with a very
small thickness ∆x which we will term the “surface layer”. Let ~x be any
point on the inner wall of the surface layer (blue on the diagram) and let n̂
be the surface normal at the point ~x. We define the confining force ~FN (~x′)
for points ~x′ in the vicinity of the surface layer as follows:

~F (~x+ xn̂) =

{
−F oN

x
∆x n̂ 0 < x < ∆x

~0 x < 0, x > ∆x

i.e. the confining force is

• zero everywhere outside the surface layer, and

• linearly increasing from 0 at the inner wall to a maximum strength
F oN > 0 at the outer wall, with a direction pointing in a direction
opposite the surface normal n̂.

The dependence of the strength of the confining force |~FN (x)| on the distance
x away from the inner wall of the surface layer is plotted in figure 2.

Our conception of the equilibrium distribution of charge at the surface
of a conductor is thus the following:

• The charge at a surface occupies an infinitely thin shell composed of
all the points lying a constant distance x away from the inner wall of
the surface layer.
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Figure 1: A diagram of some segment of the “surface layer” of a conductor.
The inner wall of the surface layer is colored blue and the outer wall is
colored fuschia.

Figure 2: Plot of the confining force strength versus the distance x away
from the inner wall.
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Figure 3: Diagram showing the splitting of the interval 0 < x < ∆x into N
even intervals. In the drawing we have N = 8.

• This distance x is determined by the requirement of force balancing
described earlier: as the surface charge density σ increases, the mutual
repulsion of the charge carriers at the surface increases and the charge
carriers move deeper into the surface layer (i.e. x increases). As the
charge moves deeper into the surface layer, the confining force increases
in strength until an equilibrium is reached where the forces balance.

Your first task, split across problems 1-3, is to calculate the work W
required to the take a charge carrier from the inner wall of the surface layer
to the outer wall, i.e. from a point ~x to a point ~x+∆x~n, or, put more simply,
from a distance x = 0 from the inner wall to a distance x = ∆x from the
inner wall. Once we obtain the expression for W we move on in problem 4
to determine the surface charge density necessary to overcome the confining
force and initiate field emission.

Our first task has a complication in that the force field FN (~x + xn̂) is
not constant over the interval 0 < x < ∆x so we can not immediately apply
the formula

W = ~Fo · (~x2 − ~x1) (1)

from lecture 7. Instead we must use the general procedure described in
the lecture notes where we split up the interval 0 < x < ∆x into N “sub-
intervals” of equal length, where N is large (i.e. the sub-intervals are short)1.
This division of the interval is illustrated in figure 3.

1. Calculate the work Wi done in taking a charge carrier across the ith

interval; that is, from a distance x = (i − 1)∆x
N away from the inner

wall of the surface layer to distance x = i∆x
N away. The index i here

is any number 1, 2, . . . , N .

Assume N is large enough that the force varies negligibly over any
subinterval so that we can use equation (1), taking the constant force
~Fo in the equation to be equal to the value of the force field ~F (~x)
evaluated at the subinterval’s endpoint. Note that the direction of the
force is in the direction opposite to our line segment. How does the
dot product in equation (1) simplify?

The answer should be expressed in terms of F oN , ∆x, and i.

1Be sure not to confuse the N subscript denoting the confining force ~F (~x′) with the
number N of subintervals.
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2. Now sum up all the works Wi to get the total work W =
∑N

i=1Wi.
You will find your answer contains the sum

N∑
i=1

i

It is actually possible to compute this sum for any N . You can try to
Google the answer or use the following trick:

(i) Assume that N is even. It makes the problem a little easier, and
in the end it doesn’t matter if N is even or odd so long as it is
large.

(ii) Pair up the first term and last term in the sum. What do they
add up to?

(iii) Now pair up the second term and second-to-last term. What do
they add up to?

(iv) How many such pairs do we have? Remember we assumed that
N is even.

However you decide to find the answer, express it in terms of F oN , ∆x,
and (possibly) N .

3. Now take your result and show that, in the case that N is very large,
our result is approximately equal to:

W = −1

2
F oN∆x

Notice this result is independent of the number N of subintervals we
divided the interval 0 < x < ∆x into. Also notice that the work W
is negative, so that, according to the work-energy principle, a particle
loses kinetic energy in traveling through the surface layer. This is
consistent with our conception of the confining force acting to prevent
charged particles from escaping the surface layer.

When we take our conductor to be a metal surface, so that our charge
carriers are electrons, the quantity |W | is known as the work function
of the metal, denoted by the greek letter Φ. It is the minimum kinetic
energy an electron must have in order to escape from the metal.

4. Find an expression for the minimum surface charge density σ necessary
for overcoming the maximum confining force F oN at a metal surface.

Express your answer in terms of the metal’s work function Φ and the
thickness ∆x of its surface charge layer.

Hint: How is the electric field at a conducting surface related to the
surface charge density at the surface? How does the force on an elec-
tron depend on the electric field vector at the electron’s location?

5. Two identical circular plates A and B of radius r are separated by
a distance d � r. High energy photons of energy Eγ are focused
onto the center of plate A, generating photo-emission of electrons (i.e.
“photoelectrons”) from the surface of A (see figure 4).
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Figure 4: Diagram for question 5. The squiggly line represents a photon,
and the straight line represents the emitted electron.

(a) Let Φ < Eγ be the work function for the metal plates. What is
the kinetic energy of the photoelectrons immediately outside the
surface, i.e. just beyond the surface layer? Assume the electrons
have essentially zero kinetic energy before they absorb a photon,
and that the plates are uncharged (i.e. σ = 0).

(b) Suppose the two plates begin initially uncharged, and after an
exposure to the high energy photons, we find that Ne photoelec-
trons have traveled from A and onto B. What is the electric
potential difference V (x) at a distance x away from plate A after
the exposure? Assume V (0) = 0. Because the plates are spaced
close together, we can assume each generates a constant electric
field given by the formula for an infinite charge plate.

(c) Now suppose we indefinitely expose plate A to photons. The
transfer of electrons from A → B is found to cease after some
time. Why? How many total electrons NMAX

e can the photons
transfer from A→ B before the transfer ceases? Assume that, no
matter how large Ne gets, the electric field at the surface of nei-
ther A nor B is strong enough to overcome the max confinement
force F oN .

Hint: what electrical forces will a photon electron traveling be-
tween A and B experience when Ne is large? Can we analyze this
situation in terms of energy conservation, i.e. use the results of
the previous problem?
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