Processing math: 45%

2022.12.01 — simple model for 18O → 16O substitution

consider an 18O-precovered surface with an influx of H216O. a simple model to describe the rise and decay of the 18OH RAIRS signal consists of the following processes:
  1. the reaction of an impinging H216O with a surface 18O to produce a pair 18OH16OH on the surface.
  2. the "disproportionation" of 18OH16OH surface pair, which leads to either:
    1. the desorption of a H216O molecule and a surface 18O atom, or
    2. the desorption of a H218O molecule and a surface 16O atom.
  3. the reaction of an impinging H216O with a surface 16O to produce a pair 16OH16OH on the surface.
  4. the disproportionation of a 16OH16OH surface pair, leading to the desorption of a H216O molecule and a surface 16O atom.
Assigning k as the disproportionation reaction rate constant, and f for the H216O flux, we obtain the following set of differential equations governing the reaction dynamics: ddt[18O]=f[18O]+k2[18OH16OH]ddt[16O]=f[16O]+k2[18OH16OH]+k[16OH16OH]ddt[18OH16OH]=+f[18O]k[18OH16OH]ddt[16OH16OH]=+f[16O]k[16OH16OH] or, in matrix form: \begin{equation} \frac{d}{dt} \underbrace{ \begin{bmatrix} \conc{\oxya} \\ \conc{\oxyb} \\ \conc{\paira} \\ \conc{\pairb} \end{bmatrix} }_{\bm{c}} = \underbrace{ \begin{bmatrix} -f & & +\frac{k}{2} & \\ & -f & +\frac{k}{2} & +k \\ +f & & -k & \\ & +f & & -k \\ \end{bmatrix} }_{M} \begin{bmatrix} \conc{\oxya} \\ \conc{\oxyb} \\ \conc{\paira} \\ \conc{\pairb} \end{bmatrix} \end{equation} or, symbolically: \begin{equation} \dot{\bm{c}} = M \bm{c} \end{equation} given some initial surface coverage condition \bm{c_o} = (c_1^o,c_2^o,c_3^o,c_4^o) and a time t_o, the coverages c'_i at a later time t' = t_o + T are given by: \begin{equation} c'_i = \sum_{j,k=1}^4 S_{ij}e^{\lambda_j T}S^{-1}_{jk}c^o_k \end{equation} where S_{ij} and \lambda_i is the eigenvector decomposition of M in the following sense: \begin{equation} \sum_{k=1}^4 M_{ik} S_{kj} = S_{ij} \lambda_j \end{equation} for i,j = 1,2,3,4. as an example, I plot below the time evolution of the surface coverages assuming f=1 and k=2 and initial surface coverages of c_1^o = \conc{\oxya}(t=t_o) = 1, c_2^o=c_3^o=c_4^o=0:
above: model predictions for a surface with an initial precoverage of \oxya. in addition to the coverages, we plot also the expected RAIRS signal for the \oha (blue) and \ohb (red) stretches. the \oha RAIRS signal is presumed to be proportional to \conc{\paira}, while the \ohb RAIRS signal is presumed to be proportional to \conc{\paira} + 2 \conc{\pairb}. the python code used to calculate and plot these results can be found at here. the code can easily be adapted to investigate the model for arbitrary values of k and f.